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Introduction

Music is an important part of any person’s life, one of the ancient art forms. Nowadays it contin-
ues to develop, including with the help of modern technologies. The Internet hosts a large number of 
online applications and platforms designed to work with digitized sound information (music). This 
group includes such types of systems as music players (iTunes , YouTube Music, Yandex.Music, Spoti-
fy), music recognition and search systems (Shazam), as well as platforms for com- mercial distribution 
of user authored music (SoundCloud, Bandcamp) [1]. 

One of the well-known research problems in this area is the melody recognition problem. Some 
of the most well-known and widespread machine learning systems that solve such problems related 
to audio analysis (virtual assistants Alexa, Google Home, Siri) are systems based on data processing 
models that extract various features from audio signals. De- pending on the data extraction methods 
(optical or auditory ), there are different solutions with their own characteristic approaches (Optical 
character recognition (OCR), Optical mu- sic recognition (OMR), Note recognition, and Speech rec-
og- nition). This paper will focus on the study of ANN approach for Note recognition task as the most 
common one in such tasks. [2] 

The purpose of the article is to present the results of the development of an ANN model for the 
melody recognition solution. [1, 2].

1. Problem statement

Audio analysis, a field that includes automatic speech recognition (ASR), digital signal process-
ing, and music classification, tagging, and generation, is an emerging subdomain of deep learning 
applications . Sound is represented in the form of an audio signal with parameters such as frequency, 
bandwidth, decibel, etc. A typical audio signal can be expressed as a function of amplitude and time. 
Some devices can capture these sounds and represent them in a machine-readable format. The audio 
processing process involves extracting acoustic features relevant to the task at hand, followed by de-
cision making schemes that include detection, classification and knowledge fusion. There are various 
characteristics by which an audio signal can be evaluated.

Spectrogram is a visual way of representing the level or loudness of a signal over time at different 
frequencies present in a waveform. The data is converted into a short-time Fourier transform. It can be 
used to determine the amplitude of the different frequencies being played at a given time of an audio 
signal. Spectral (frequency) features are obtained by transforming the time signal into the frequency 
domain using the Fourier transform. These include fundamental tone frequency, frequency compo-
nents, spectral centroid, spectral flux, spectral density, spectral rolloff, etc. [3] 

Spectral Centroid (Spectral Centroid) indicates at which frequency the energy of the spectrum is 
concentrated, or in other words, indicates where the ”center of mass” for sound is located. 
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Chromaticity (feature or color vector, Chromagram) (Chroma) is usually represented by a feature 
vector of 12 elements that indicates the amount of energy of each pitch class (Pitch class) C, C#, D, D#, E, 
F, F#, G, G#, A, A#, B in the signal. It is used to describe a measure of similarity between musical pieces.

This problem belongs to the class of identification problems. A problem belonging to the class of 
time series analysis was also used as a subproblem to be solved. A finite set of precedents is given, for 
each of which some data are collected. The data about a precedent is also its description. The aggregate 
of all available precedent descriptions is a training sample. It is required to identify general dependen-
cies, patterns, interrelationships inherent not only in this particular sample, but in general all prece-
dents, including those that have not yet been observed, and on the basis of the identified dependencies 
to design the architecture of the solution to the problem of recognizing the melody. [4] 

2. Development of neural network model

For the design and realization of the neural network model for solving the problem 4 indicators 
(audio features) were recorded — spectral rolloff, spectral centroid, mel-frequency characteristics, 
and chromagram. 

To build an ANN model for processing the in-
dicators, an architecture was designed based on 
a MLP ANN model. The choice of this model as 
the core of the current solution was made within 
the framework of the idea of dividing the prob-
lem to be solved into 2 regression tasks: the task 
of predicting frequency heights and the task of 
predicting durations and intervals. The peculiar-
ity of the model in the considered solution is the 
recognition of both values (duration and pitch) in 
parallel with the subsequent superimposition of 
filters and masks and combination into a famil-
iar for linear regression one-dimensional array 
of values. A chromagram, spectral and mel-fre-
quency characteristics are processed and passed 
as predicted parameters of the each of 3 MLP hid-
den layers of the ANN model (ANN model’s ar-
chitecture is presented on Figure 1). In the course 
of this solution, the Adam learning algorithm for 
ANN-model was selected as the most optimal 

one, and the Accuracy and Hinge was chosen as the most optimal metric for quality assessment and 
target function of ANN-model learning.

2.1. Mathematical Description

The following variables and the sets described by them were introduced for the mathematical de-
scription of the problem and computation algorithms.

Batch normalization function for scaling vectors of values into the range from 0 to 1:

	 [ ] 1
( )( ) 1, , , ( ) 0, ,1 , ( , , ),

( )BN k k BN d
x E xf x W b k d f x x x x

D x
−

= + ∀ ∈ ∈ =  

where x — vector of dimensionality ,d  ( )E x  — mathematical expectation, ( )D x  — variance,  ,W  b — 
coefficients adjusted as a result of ANN-model operation ( W  — matrix of ANN-model weights, b — 
interference vector). It is used for processing of spectral and mel-frequency characteristics.

Fig. 1. Architecture of ANN model
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Vector of processed spectral rolloff:
	 ( ), [0,...,1],sr BN sr srx f x x′ ′= =

where crx  — vector of initial spectral rolloff.
Vector of processed spectral centroid: 
	 ( ), [0,...,1],sc BN sc scx f x x′ ′= =

where ccx  — vector of initial spectral centroid.
Vector of processed mel-frequency characteristics: 
	 ( ), [0,...,1],f BN mfcc mfccm ccx f x x′ ′= =

where mfccx  — vector of initial mel-frequency characteristics.
Processed chromaticity vector, chromagram: 
	 ,chromax t′ ′=

	 ( ,max )ac ht c romx x′ ′=

	 [1, ,12], [1, ,12],chromat x∀ ′∈ ∈ 

where chromax  — initial chromagram.
Function of the Binary Activation layer of the ANN model: 

	
0, 0,5

( ) ( ) , [0,1].
1, 0,5BA BinaryActivation

x
f x f x x

x
<

= = = >
The main function of the ANN-model operation: 
	 , ,( , , ) ( ( ( ( ( , , ))))).ANN sr sc mfcc chroma i BA BN LD DO sr sc mfcc chromay f x x x x f f f f f x x x x′ ′ ′ ′ ′ ′ ′ ′= =

3. Testing the decision model

For the experiment, a sample of precedents was generated and trained from 1277 audio files and 
containing an average duration of 200 to 1000 seconds. The sample of precedents for training and test 
samples are divided into a percentage of 70 % and 30 % respectively. In processing the raw data, all 
vectors were reduced to values of 0 to 1. Training of the obtained ANN model of 20 epochs with 1750 
training steps in each epoch using training sample of precedents was carried out. The obtained results 
were evaluated using the Accuracy and Hinge metrics. Testing of the trained ANN model was carried 

Fig. 2. Graphs of loss and accuracy on training
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out using the test sample of precedents. The obtained test results were obtained by evaluating the ob-
tained values by quality assessment metrics based on the edit string distance. 

Illustration of the results of ANN-model training performance are given according to 2. An illus-
tration of the performance results of the ANN model prediction are given according to 3. 

As a result of testing the decision model on the automatically generated data, it was found that the 
average comparison metric of the obtained note sets varies between 82 %–88 %. This result indicates 
a good predictive ability of the obtained data processing model, but not perfect. 

Conclusion

The result of this article was the analysis of audio data and the implementation of a test ANN 
model for the developed solution to the problem of melody recognition. On the basis of this analysis, 
the methods, features, advantages and problems of the obtained solution of the above problem on the 
basis of the realized ANN-model are studied, the problems of the obtained implementation are for-
mulated and the goals and objectives for further research are defined. 
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Аннотация. Данная статья посвящена исследованию методов распознавания рукописно-
го текста технологиями машинного обучения, также разработке и анализу модели, спо-
собной распознать рукописный текст на изображении. Рассмотрены ключевые моменты 
этой задачи, связанные с формированием подходящего набора данных, учетом стилисти-
ческих особенностей различных языков и алфавитов, создана модель для обработки и 
распознавания, учитывающая раннее описанные способности, а также обучена на тесто-
вом наборе данных.
Ключевые слова: распознавание рукописного текста, машинное обучение, CNN, RNN, 
LSTM, CTC, градиент, обучение, функция потерь, генерация тренировочных данных, об-
работка последовательностей, нейросетевые модели.

Введение

В современном мире, особенно в последние годы актуальной задачей становится автома-
тизация обработки информации, объем которой увеличивается в геометрической прогрессии, 
и значительная часть этой информации хранится на бумажных носителях — в большинстве 
случаев, написанная от руки, в качестве рукописных документов.

Проблема автоматического распознавания рукописного текста заключается в том, что че-
ловеческий почерк очень разнообразен: помимо того, что одна и та же буква может быть на-
писана тысячами вариаций, даже одна вариация может быть разделена еще на несколько, в 
зависимости от толщины и цвета ручки, качества бумаги и так далее. При этом невозможно 
составить один набор правил, по которому определяется конкретная буква, а сами они, осо-
бенно в русском языке (кириллице) могут быть очень схожи. 

Перспективным и наилучшим направлением является применение методов машинного 
обучения, в частности, глубоких нейронных сетей. Алгоритм машинного обучения анализи-
рует тысячи и миллионы примеров и сам для себя составляет набор очень сложных правил, 
которые мог бы не заметить обычный человек. Сам этот алгоритм может быть схож с обучени-
ем ребенка чтению: сначала он видит букву в букваре, потом в словах, потом в книжках, потом 
учит в школе в прописях и так на протяжении всей жизни, и может различать буквы, в каком 
виде они бы ни были, в любом шрифте, а не только в том, который видел раньше. 

Цель данной работы заключается в изучении и исследовании существующих методов и ал-
горитмов машинного обучения, а также разработка и анализ модели, способной эффективно 
обрабатывать и распознавать рукописный текст с помощью данных методов и алгоритмов.

1. Формирование многоязычного датасета

Обучение модели, как и человека, не обходится без достаточно большого количества дан-
ных, в основном, это тысячи или десятки тысяч размеченных примеров. В случае с распозна-
ванием рукописного текста, их объем увеличивается в связи с количеством различных языков. 
Необходимо сделать модель, умеющую распознавать текст на четырех из шести официальных 
языках ООН: английский, французский, испанский, русский. Все эти языки имеют свои осо-
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бенности, так как они имеют различные алфавиты: латиница и кириллица, и разные особен-
ности каллиграфии, и для каждого из них нужно большое количество данных для обучения.

Основная проблема — отсутствие готовых, подходящих датасетов для всех языков. В каче-
стве решения, предлагается обращение к генеративной нейросети, синтезирующей подходя-
щие датасеты для необходимого объема размеченных данных. Под разметкой подразумевает-
ся добавление к исходным данным, в случае данной задачи — к изображениям рукописного 
текста, специальных меток, которые объясняют модели, что именно находится на картинке, 
«эталонное представление».

2. Архитектурное решение

В качестве архитектурного решения наиболее выгодна архитектура, соединяющая CNN 
для извлечения признаков и RNN для анализа последовательностей. 

Общая схема модели представлена на рис. 1.

2.1. Сверточная часть (CNN)

CNN — сверточные сети — используют свертки для возможности выделения форм без 
участия человека и эффективно работают с изображениями для выделения важных призна-
ков. В данной задаче важен такой подход, так как, несмотря на различие почерков, каждая 
буква имеет свои признаки, по которым сам человек может отличить одну букву от другой: в 
букве «А» (заглавной) всегда будет две наклонных и линия между ними, независимо от почер-
ка, и к ней может еще что-то прибавляться, изменяться угол наклона, но это те признаки, ко-
торые есть только у заглавной «А». Из этого можно сделать вывод, что принцип работы CNN 
вдохновлен и схож с организацией зрительной коры головного мозга: 

CNN состоит из нескольких слоев, и каждый из этих слоев отвечает за определенные дей-
ствия: 

– Сверточные слои: применяют набор фильтров к изображению (маленькая матрица раз-
мером 3 × 3 или 5 × 5), которые скользят по входному изображению, умнажают значение пик-
селя под окном на соответствующие веса, в итоге сумма дает одно значение карты признаков 
на фильтр, тогда несколько фильтров дают набор карт признаков. При этом ранние слои выде-
ляют низкоуровневые признаки (углы и контуры), тогда как глубокие слои выделяют все более 
сложные структурные элементы и паттерны.

– Слой активации добавляет нелинейность через функции типа ReLU, что ускоряет обуче-
ние, пропуская части с отсутствующими важными признаками, и позволяет модели обучится 
сложным зависимостям.

– Слои пулинга: уменьшают размерность карт признаков, сохраняя наиболее важную ин-
формацию, выделяя доминирующие значения, при этом повышает инвариантность к малым 
искажениям, снижая чувствительность к дефектам и шуму.

– Полносвязный слой преобразует двумерные карты признаков в одномерные векторы. 
Теперь они будут использоваться для финального предсказания в классическом понимании 
нейронных сетей, где каждый нейрон связан с нейронами предыдущего слоя. 

В контексте задачи распознавания рукописного текста CNN способна выявлять инвари-
антные признаки символов, независимо от вариативности почерка.

Рис. 1. Общая архитектура модели для распознавания рукописного текста
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2.2. Рекуррентная часть (LSTM)

RNN — рекуррентные нейронные сети — специализируются на обработке последователь-
ности данных, они используют одну и ту же функцию на каждом элементе последовательно-
сти, при этом не забывая о результатах предыдущих элементов. В отличие от традиционных 
нейронных сетей, RNN способны обработать последовательность произвольной длины, при 
этом сохраняя связь между элементами — что важно для рекуррентных сетей. Также суще-
ствуют двунаправленные RNN, которые расширяют возможности до обработки последова-
тельностей в обе стороны. 

В традиционных RNN существует проблема, связанная с тем, что на действительно боль-
ших последовательностях происходит затухание градиента (вектор частных производных 
функции потерь по всем параметрам модели), что снижает эффективность. Тогда в качестве 
решения этой проблемы была создана LSTM — сеть с долговременной и кратковременной па-
мятью, основная идея которой заключалась во внедрении структур («ворот»), регулирующих 
поток информации внутри сети, что обеспечивает более стабильный градиент. 

Для модели распознавания текста в итоге была выбрана, более подходящая данной задаче, 
LSTM.

2.3. Процесс обучения

Для обучения модели использована функция потерь Connectionist Temporal Classification 
(CTC), специально разработанная для случаев, когда соответствие между входными и выход-
ными последовательностями неизвестно. И для задачи распознавания текста это особенно ак-
туально, так как отсутствует явное выравнивание между временными шагами и выходными 
символами.

Математическая основа CTC использует алгоритм forward-backward для расчёта вероятно-
сти всех возможных выравниваний между входной и выходной последовательностями. Этот 
алгоритм эффективно вычисляет сумму вероятностей всех допустимых путей, которые сопо-
ставляют входную последовательность с выходной, включая специальный токен для отсут-
ствующего символа, на рис. 2 приведена схема процесса обучения, включающая в себя этапы, 
описанные ниже.

Рис. 2. Схема процесса обучения модели
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Процесс обучения включает в себя 3 основных этапа:
– Прямой проход (Forward Pass). На данном этапе происходит предобработка изображе-

ний, включающая в себя преобразование в градации серого, ресайзинг до фиксированного 
размера и нормализация значений пикселей в диапазон [–1, 1]. Далее идет извлечение про-
странственных признаков с помощью CNN и анализ последовательностей через LSTM, и на 
выходе получаем значения вероятностей символов для каждого временного шага.

– Вычисление функции потерь. Здесь CTC Loss сравнивает предсказанные последователь-
ности с истинными метками, учитывая все возможные выравнивания.

– Обратный проход и обновление весов. Здесь происходит вычисление градиентов функ-
ции потерь относительно параметров модели и обновление весовых коэффициентов (число-
вых значений, которые присвоены соединениям между нейронами, по сути, само обучение — 
настройка этих соединений) с помощью оптимизатора Adam.

3. Анализ

Данная архитектура сочетает в себе сверточные и реккурентные сети, что обеспечивает 
преимущества для задачи многоязычного распознавания рукописного текста. Инвариант-
ность CNN позволяет устойчиво распознать символы независимо от вариаций почерка, мас-
штаба, ориентации, наличия шумов, а обработка LSTM обеспечивает учет лингвистических 
зависимостей между символами, что важно для различных языков со своими грамматически-
ми структурами.

Если сравнивать с традиционными подходами, то данная архитектура имеет существенные 
преимущества, так как традиционные OCR-системы имеют низкую адаптивность к вариаци-
ям почерка, а обычные CNN-классификаторы игнорируют контекстные зависимости, что в 
данной задаче недопустимо.

Но несмотря на преимущества, могут возникнуть проблемы, связанные с вычислительной 
сложностью, требующей значительных ресурсов, или с несбалансированностью датасетов из-
за различных языков.

Заключение

В рамках данной работы была проделана значительная аналитическая часть по проекти-
рованию системы распознавания рукописного текста. В ходе исследования была рассмотрена 
архитектура CNN+RNN и обоснована ее эффективность, работающая в сочетании с CTC Loss 
для обучения модели. Также рассмотрены решения проблем связанных с многоязычностью 
поставленной задачи, и проанализированы преимущества и ограничения данного подхода.

С одной стороны, модель выигрывает у более традиционных подходов, но с другой сторо-
ны, все еще имеются проблемы, связанные с огромным количеством затрачиваемых ресурсов, 
возможным смещением модели из-за различия языков и схожестью некоторых символов в 
кириллице и на латинице, что может вызывать некоторые ошибки.
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СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФУНКЦИЙ ПОТЕРЬ 
ДЛЯ ПРОГНОЗИРОВАНИЯ РИСКА СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ 

С ИСПОЛЬЗОВАНИЕМ ГЛУБОКОГО ОБУЧЕНИЯ

Амурский государственный университет

А. А. Алексеенко, Н. Н. Максимова

Аннотация. В работе исследуется применение полносвязной нейронной сети для прогно-
зирования риска сердечно-сосудистых заболеваний на основе анамнестических данных 
из открытого набора «Personal Key Indicators of Heart Disease». Особое внимание уделено 
проблеме сильной несбалансированности классов, для решения которой использованы 
ручная балансировка классов (class_weight = {0: 1.0, 1: 20.0}) и сравнение функций по-
терь — Binary Cross-Entropy и Focal Loss. Показано, что модель с Binary Cross-Entropy обе-
спечивает высокий Recall (0.89), что делает её предпочтительной для медицинских скри-
нинговых задач, несмотря на низкую точность положительных предсказаний.
Ключевые слова: искусственный интеллект, машинное обучение, нейронные сети и глу-
бокое обучение, прогнозирование сердечно-сосудистых заболеваний, бинарная класси-
фикация, несбалансированные данные, Focal Loss, Binary Cross-Entropy, Recall.

Введение

Искусственный интеллект все более активно используется в медицине для анализа боль-
ших массивов данных, диагностики и прогнозирования рисков различных заболеваний [1, 2]. 
Одним из наиболее перспективных направлений в медицине является применение нейронных 
сетей, которые способны находить корреляции между медицинскими показателями.

Заболевания системы кровообращения все еще являются ведущей причиной смерти в Рос-
сии [3]. Соответственно, одной из актуальных задач искусственного интеллекта и машинного 
обучения является раннее выявление рисков сердечных патологий. Это позволит эффективно 
распознавать группы риска и предупреждать развитие заболеваний. 

Цель данной работы — построение и обучение полносвязной нейронной сети для определе-
ния прогнозирования риска сердечных патологий на основе медицинских параметров человека.

1. Описание набора данных

В качестве обучающего набора был использован набор данных «Personal Key Indicators of 
Heart Disease» [4]. Данный набор является производной (обработанной) версией официаль-
ных данных, собранных в рамках Behavioral Risk Factor Surveillance System (BRFSS) — ежегод-
ной системы опросов населения США, проводимой Центрами по контролю и профилактике 
заболеваний (CDC, Centers for Disease Control and Prevention).

Датасет содержит 17 признаков (возраст, пол, уровень холестерина, артериальное давление 
и другие показатели здоровья) и 1 целевую переменную (наличие или отсутствие сердечного 
заболевания). Размер исходного набора составляет 319795 строк. 

В рамках предварительной обработки [5] были удалены дубликаты, осуществлена переко-
дировка категориальных переменных, выполнен анализ корреляционной зависимости между 
переменными. В дополнение к этому был проведен анализ числовых данных на выбросы. Для 
такого анализа существует множество визуальных (Box plot, гистограмма, Scatter plot, QQ-plot) и 
статистических (IQR, Z-оценка, модифицированная Z-оценка, метод трёх сигм) методов, а также 
методы на основе машинного обучения. На основе проведенного анализа выбросов по мето-
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ду межквартильного размаха (IQR) можно сделать следующие выводы: большинство значений, 
формально определяемых как выбросы, не являются ошибками, а отражают реальные и кли-
нически значимые состояния пациентов. Тем самым, удаление всех статистических выбросов в 
данном датасете нецелесообразно. Вместо этого следует применять гибкий, предметно-ориен-
тированный подход: удалять только заведомо невозможные значения и сохранять клинически 
обоснованные экстремумы. Были проверены границы на физическую допустимость (BMI из 
промежутка [10, 60], SleepTime — [0, 24], Physical и MentalHealth — [0, 30]). Такой анализ показал, 
что только BMI содержит явные выбросы (492 записи), которые были удалены из набора.

Окончательно для построения моделей машинного обучения были использованы 301225 
строк. Эти данные были разделены на тренировочную и тестовую выборки в соотношении 
80/20 с параметром random_state = 42. Кроме того, при разделении учтена несбалансирован-
ность классов посредством настройки stratify = y (так гарантируется, что пропорции классов в 
целевой переменной будут одинаковыми как в обучающей, так и в тестовой выборках).

Кроме того, из-за несбалансированности («Yes» — 9 %, «No» — 91 %) при оценке качества 
обучения нельзя пользоваться метрикой Accuracy; в этом случае основным показателем ка-
чества будет выступать метрика Recall, поскольку модели будут предсказывать наличие забо-
левания, а также дополнительные метрики, такие как F1-мера и ROC-AUC. Кроме того, этот 
факт следует учесть при выборе архитектуры и настроек нейронной сети.

Все процедуры загрузки и обработки данных, проводились средствами библиотек языка 
Python в среде для разработки и выполнения программного кода Google Colaboratory [6].

2. Архитектура нейронной сети

Предложенная архитектура искусственной нейронной сети представляет собой полнос-
вязную многослойную сеть последовательной структуры [7], предназначенную для решения 
задачи бинарной классификации. Сеть состоит из входного слоя, четырёх скрытых слоёв с 
убывающим количеством нейронов (256 / 128 / 64 / 32) и одного выходного нейрона.

Для повышения устойчивости обучения и снижения риска переобучения в архитектуру 
последовательно интегрированы следующие техники регуляризации и стабилизации:

– Batch Normalization (применяется после каждого скрытого слоя для нормализации распре-
деления активаций, что ускоряет сходимость и повышает обобщающую способность модели) [8];

– Dropout с постепенно уменьшающимся коэффициентом (от 0.5 до 0.2) используется для 
стохастического отключения нейронов в процессе обучения, что снижает взаимную адапта-
цию нейронов и улучшает робастность модели [9].

В качестве функции активации в скрытых слоях выбрана ReLU (Rectified Linear Unit), обе-
спечивающая нелинейность преобразований при сохранении вычислительной эффективно-
сти. Выходной слой использует сигмоидальную функцию активации, что позволяет интерпре-
тировать выход модели как вероятность принадлежности к положительному классу.

Такая архитектура сбалансирована с учётом объёма и структуры исходных данных, обе-
спечивая достаточную выразительную мощность для выявления сложных нелинейных зави-
симостей между факторами риска и целевым признаком, при одновременном контроле пе-
реобучения за счёт многоуровневой регуляризации. Общее количество параметров (весов) 
модели составляет 49793. 

3. Настройки нейронной сети

В качестве функции потерь были использованы два варианта. Первый из них — стандарт-
ная для задач двухранговой классификации Binary Cross-Entropy Loss [10], которая определя-
ется по формуле 
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Эта функция потерь хорошо работает с сигмоидальной активацией и чувствительна к 

ошибкам в обоих направлениях: ложноположительным и ложноотрицательным. 
Вторая функция ошибки — Focal Loss, которая была предложена в работе [11] для решения 

проблемы сильного дисбаланса между классами. Математическая запись формулы имеет вид
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{0,1}y∈  — истинная метка, (0,1)p∈  — предсказанная моделью вероятность класса 1, (0,1)α ∈  — 

вес редкого класса (по умолчанию 0.75α = ), 0γ ≥  — фокусирующий параметр (по умолчанию 
2γ = ).
Для минимизации функции потерь использовался оптимизатор Nadam, сочетающий в себе 

преимущество оптимизаторов Adam и Nesterov Accelerated Gradient [12]. Обычный метод Adam 
использует экспоненциально скользящие средние первого (градиент) и второго (квадрат гра-
диента) моментов для адаптивного изменения шага обучения по каждому параметру. Однако 
он не учитывает «коррекцию по инерции», как в методе Nesterov, где обновление параметров 
происходит не по текущему градиенту, а по прогнозируемому (вперёд-смотрящему) направ-
лению. Nadam модифицирует Adam, внедряя импульс по схеме Nesterov непосредственно в 
оценку первого момента, что позволяет ускорить сходимость, уменьшить «перелёты» через 
оптимум, улучшить стабильность обучения, особенно в начальных эпохах.

Для оценки качества модели в процессе обучения отслеживались две ключевые метри-
ки — Precision (точность) и Recall (полнота), что позволяет комплексно контролировать ба-
ланс между ложноположительными и ложноотрицательными предсказаниями. Такой выбор 
метрик обусловлен спецификой медицинской задачи, где критически важно не только мини-
мизировать количество ложных тревог, но и максимально полно выявлять пациентов с сер-
дечно-сосудистыми заболеваниями.

Обучение проводилось в течении 50 эпох с применением ранней остановки EarlyStopping 
[13]. Обучение прерывалось, если в течение 10 последовательных эпох не наблюдалось улуч-
шение значения функции потерь на валидационной выборке (val_loss). При этом сохранялись 
веса модели, соответствующие наилучшему значению контролируемой метрики (восстанов-
ление лучших весов — restore_best_weights=True). Такой подход позволил избежать избыточ-
ного обучения и повысить обобщающую способность полученной нейронной сети.

В связи с выраженной несбалансированностью целевой переменной при обучении нейрон-
ной сети была применена ручная настройка балансировки классов посредством функции class_
weight_dict = {0: 1.0, 1: 20.0}. Это означает, что при вычислении функции потерь модель будет в 
20 раз сильнее «наказываться» за ошибки на объектах класса 1 (положительный класс — «есть 
сердечно-сосудистое заболевание»), чем за ошибки на объектах класса 0 («нет заболевания»). 
Такой подход приводит к большей продолжительности обучения, но к лучшему качеству.

Обучение нейронной сети выполнялось с размером батча (batch size), равным 256, что обе-
спечивает компромисс между стабильностью градиентных обновлений и вычислительной эф-
фективностью. Для оценки обобщающей способности модели и контроля за переобучением 
использовалось разделение выборки с выделением 20 % данных на валидационную подвыбор-
ку (validation_split = 0.2). 

4. Анализ качества прогнозирования

Процесс обучения нейронной сети представлен на рис. 1-2. На рис. 1 отображена динамика 
изменения ключевых метрик, на рис. 2 — функции ошибки. После обучения была осущест-
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влена проверка качества на тестовом наборе. В табл. 1 представлены значения всех метрик, на 
рис. 3 — графики ROC-кривых.

а б
Рис. 1. Динамика изменения метрик Precision и Recall на тренировочной и валидационной 

выборках (а — с функцией Binary Cross-Entropy Loss, б — с функцией Focal Loss)

Рис. 1а показывает, что значение метрики Recall стабильно высокое (около 0.90) как на тре-
нировочной, так и на валидационной выборке. Это говорит о том, что модель очень хорошо 
находит больных пациентов, что является главной целью задачи. Метрика Precision является 
крайне низкой (около 0.17–0.18); это означает, что из всех предсказаний «больной» лишь 17–18 
% действительно являются больными, остальные — ложные срабатывания. Разница между 
Train и Val для обеих метрик минимальна — это указывает на отсутствие переобучения. 

а б
Рис. 2. Динамика изменения функции ошибки 

(а — для Binary Cross-Entropy Loss, б — для Focal Loss)

По рис. 1б видно, что метрика Recall значительно ниже (колеблется в пределах 0.40–0.5). 
Это означает, что модель находит только 40–50 % больных пациентов, что существенно хуже, 
чем в случае а). Метрика Precision заметно выше (около 0.35–0.4), т. е. из всех предсказаний 
«больной» теперь примерно 35–40 % действительно больны — точность прогноза повысилась. 
Наблюдается небольшая разница между Train и Val, особенно по Recall, что может указывать 
на начало переобучения. Динамика более шумная — особенно для Precision на валидации — 
что характерно для Focal Loss, который фокусируется на сложных примерах.

На рис. 2а наблюдается значительный разрыв между Train Loss и Val Loss — это типичный 
признак того, что модель обучается на «легких» примерах, которые преобладают в данных (здо-
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ровые пациенты). Валидационная ошибка низкая, потому что модель почти всегда предсказы-
вает 0 («здоров»), что верно для большинства случаев. Focal Loss значительно уменьшает общее 
значение потерь (рис. 2б), особенно на тренировочной выборке. Это связано с тем, что она «фо-
кусируется» на трудных примерах (в данном случае — на больных пациентах), и её формула по-
давляет вклад легко классифицируемых примеров. Однако, как показано в рис. 1б, это привело 
к снижению Recall. Низкий Val Loss может быть обманчивым — он отражает хорошую работу 
модели на «легких» примерах, но не гарантирует хорошего качества на редком классе.

Таблица 1
Значение метрик качества на тестовом наборе

Функция ошибки Класс
Метрика

precision recall f1-score accuracy AUC

Binary Cross-Entropy Loss
0 0.98 0.61 0.75 0.63 0.833
1 0.18 0.89 0.30

Focal Loss
0 0.94 0.93 0.93 0.87 0.834
1 0.35 0.44 0.39

а б
Рис. 3. ROC-кривые для обученных моделей на тестовом наборе 

(а — для Binary Cross-Entropy Loss, б — для Focal Loss)

Результаты, представленные в табл. 1, демонстрируют фундаментальный компромисс 
между полнотой (Recall) и точностью (Precision) при прогнозировании сердечно-сосудистых 
заболеваний. Модель, обученная с использованием Binary Cross-Entropy Loss, обеспечивает 
высокий Recall (0.89) для положительного класса, что критически важно в медицинских при-
ложениях. В то же время Focal Loss, несмотря на улучшение общей точности и баланса метрик, 
значительно снижает способность модели выявлять больных пациентов (Recall = 0.44), что 
делает её менее пригодной для практического использования в скрининговых системах.

Заключение

В рамках проведённой работы была построена и обучена полносвязная нейронная сеть для 
прогнозирования риска сердечно-сосудистых заболеваний на основе анамнестических и де-
мографических данных из набора «Personal Key Indicators of Heart Disease». Исходный датасет 
содержал более 319 тысяч записей, после предварительной обработки (удаления дубликатов 



163

и клинически недопустимых выбросов) для обучения использовано 301 225 объектов. В ходе 
экспериментов была разработана архитектура нейронной сети с четырьмя скрытыми слоями 
(256 → 128 → 64 → 32 нейронов), интегрированы методы регуляризации (Batch Normalization и 
Dropout) и протестированы две функции потерь (Binary Cross-Entropy и Focal Loss). Для обу-
чения применялись оптимизатор Nadam, ручная балансировка классов (class_weight = {0: 1.0, 
1: 20.0}) и механизм ранней остановки. Все вычисления выполнялись с использованием би-
блиотек TensorFlow и Keras на языке программирования Python в среде Google Colaboratory.

Полученные результаты показали, что модель, обученная с использованием Binary Cross-
Entropy Loss в сочетании с весовой балансировкой классов, обеспечивает наилучшее соотно-
шение между полнотой и точностью диагностики по сравнению с Focal Loss, что делает её бо-
лее пригодной для применения в скрининговых системах. Разработанная модель может быть 
использована для раннего выявления групп риска сердечно-сосудистых заболеваний, что спо-
собствует своевременному вмешательству и снижению общей заболеваемости. Данное иссле-
дование демонстрирует потенциал методов машинного обучения в анализе несбалансирован-
ных медицинских данных и подчеркивает важность правильного выбора метрик и стратегий 
обучения при решении практически значимых задач в здравоохранении.

Литература

1. Jiang F. Artificial intelligence in healthcare: past, present and future / F. Jiang, Y. Jiang, H. Zhi, 
Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Li, X. Shen // Stroke and Vascular Neurology. – 2017. – 
Vol. 2, № 4. – https://doi.org/10.1136/svn-2017-000101 

2. Litjens G. A survey on deep learning in medical image analysis / G. Litjens, Th. Kooi, B. Ehte-
shami Bejnordi, A. Arindra Adiyoso Setio, F. Ciompi, M. Ghafoorian, Jeroen A.W.M. van der Laak, 
B. van Ginneken, C. I. Sánchez // Medical Image Analysis. – 2017. – V. 42. – P. 60–88. – https://doi.
org/10.1016/j.media.2017.07.005 

3. Коржавая А. Н. Статистический анализ смертности населения в Российской Федерации / 
А. Н. Коржавая, А. С. Мерзликина // Молодой ученый. – 2024. – № 18 (517). – С. 476–478. – Ре-
жим доступа: https://moluch.ru/archive/517/113586

4. Indicators of Heart Disease (2022 UPDATE) [Электронный ресурс]. URL: https://www.kaggle.
com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease (дата обращения: 10.02.2025)

5. Алексеенко А. А. Предсказание риска сердечных патологий: моделирование на основе 
анализа больших данных / А. А. Алексеенко, Н. Н. Максимова // XXVII Всероссийская сту-
денческая научно-практическая конференция Нижневартовского государственного универ-
ситета: Материалы конференции, Нижневартовск, 09–10 апреля 2025 года. – Нижневартовск: 
Нижневартовский государственный университет, 2025. – С. 159–163.

6. Google Colaboratory [Электронный ресурс]. URL: https://colab.google (дата обращения: 
09.10.2024)

7. Гудфеллоу Я. Глубокое обучение / Я. Гудфеллоу, И. Бенджио, А. Курвилль, пер. с анг. 
А. А. Слинкина. – 2 изд., испр. – М. : ДМК Пресс. – 2018. – 652 с. 

8. Ioffe S. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covar-
iate Shift / S. Ioffe, Ch. Szegedy // ICML (International Conference on Machine Learning). – 2015. – 
https://doi.org/10.48550/arXiv.1502.03167 

9. Srivastava N. Dropout: A Simple Way to Prevent Neural Networks from Overfitting / N. Srivas-
tava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov // Journal of Machine Learning Re-
search. – 2014. – V. 15(1). – P. 1929−1958. – http://jmlr.org/papers/v15/srivastava14a.html 

10. Hinton G. E. A Fast Learning Algorithm for Deep Belief Nets / G.E. Hinton, S. Osindero, 
Y.-Wh. Teh // Neural Computation. – 2006). – V. 18 (7). – P. 1527–1554 2006. – https://doi.org/10.1162/
neco.2006.18.7.1527 



164

11. Lin Ts.-Yi. Focal Loss for Dense Object Detection / Ts.-Yi Lin, P. Goyal, R. Girshick, K. He, 
P. Dollar // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2020. – V. 42, № 2. – 
P. 318–327. – https://pubmed.ncbi.nlm.nih.gov/30040631/ 

12. TensorFlow Documentation [Электронный ресурс]. URL: https://www.tensorflow.org/api_
docs/python/tf/keras/optimizers/Nadam (дата обращения: 03.09.2025)

13. TensorFlow Documentation [Электронный ресурс]. URL: https://www.tensorflow.org/api_
docs/python/tf/keras/callbacks/EarlyStopping (дата обращения: 03.09.2025)



165

УДК 004.93

СРАВНЕНИЕ АППАРАТНЫХ ПЛАТФОРМ КОМПЬЮТЕРНОГО ЗРЕНИЯ 
В ЗАДАЧЕ АВТОНОМНОГО ТРАНСПОРТА

Воронежский государственный университет

А. М. Аникандров

Аннотация. В работе проведен сравнительный анализ аппаратных платформ компьютер-
ного зрения, применяемых в системах восприятия автономного транспорта. Рассмотрены 
ключевые сенсорные платформы: моноскопические и стереоскопические камеры, лидары 
и радары. В рамках практической части представлена реализация системы стереозрения 
на базе библиотеки OpenCV для Python. Показано, что каждый из рассмотренных под-
ходов обладает характерными преимуществами и ограничениями по точности, надеж-
ности, стоимости и вычислительной сложности, что обуславливает их применимость в 
различных сценариях эксплуатации.
Ключевые слова: компьютерное зрение, автономный транспорт, стереозрение, OpenCV, 
Python, лидар, радар, детекция объектов, сенсорные системы, семантическая сегмента-
ция, оценка глубины.

Введение

Развитие технологий автономной навигации является одним из ключевых направлений 
современной робототехники и машинного обучения. Расширение областей применения по-
рождает широкий спектр технических требований к системам восприятия, которые составля-
ют основу любого автономного транспорта. Фундаментальной задачей, от решения которой 
напрямую зависит функционирование автономного транспорта, является построение точной 
и надежной модели окружающего пространства в реальном времени.

Существующие аппаратные средства компьютерного зрения (камеры, лидары, радары) об-
ладают существенно различающимися характеристиками по точности, надежности, стоимо-
сти и работоспособности в различных внешних условиях. Актуальность данного исследова-
ния обусловлена необходимостью систематического сравнения этих решений для выявления 
их применимости и ограничений в различных сценариях эксплуатации.

1. Обзор существующих аппаратных решений

Формирование модели окружающего пространства основывается на данных, получаемых 
от комплекса сенсоров. Ключевыми аппаратными платформами, используемыми для решения 
задач компьютерного зрения, являются моноскопические и стереоскопические камеры, лида-
ры и радары. Каждая из этих платформ уникальным принципом действия, что обуславливает 
их преимущества и ограничения.

1.1. Моноскопические камеры

Принцип действия: Моноскопическая камера представляет собой сенсор, регистрирую-
щий проекцию трехмерного мира на двумерную плоскость в виде изображения. Изображение 
формируется за счет света, отраженного от объектов и прошедшего через систему линз на 
светочувствительную матрицу.

Преимущества:
• Высокая информативность: Камеры предоставляют богатую текстуру и цветовую информа-

цию, что является критически важным для алгоритмов распознавания и классификации объектов.



166

• Высокое пространственное разрешение: Позволяют детектировать мелкие объекты и 
точно определять их границы.

• Относительно низкая стоимость: По сравнению с остальными сенсорами, монокамеры 
являются одним из наиболее экономичных решений.

• Пассивность работы: Не излучают сигналы, что позволяет работать скрытно и не созда-
вать помех другим сенсорам.

Ограничения:
• Отсутствие непосредственного измерения глубины: Для оценки расстояния до объектов 

требуются сложные алгоритмы, основанные на предположениях о размерах объектов или ана-
лизе перспективы, что снижает точность и надежность.

• Сильная зависимость от условий освещения: Существенно затруднена или невозможна 
работа в темное время суток, при ярком солнце, в условиях тумана.

• Высокая вычислительная нагрузка: Обработка видеопотока высокого разрешения для 
задач детектирования и семантической сегментации требует значительных вычислительных 
ресурсов.

1.2. Стереоскопические камеры

Принцип действия: Стереоскопическая система (стереокамера) состоит из двух синхро-
низированных камер, разнесенных на известное расстояние (базис). Принцип работы основан 
на триангуляции: путем сопоставления пикселей на двух изображениях (поиска стереопар) 
вычисляется карта смещений (disparity map), которая затем преобразуется в карту глубины 
(depth map).

Преимущества:  
• Прямое измерение глубины: В отличие от монокамер, стереосистемы позволяют полу-

чать плотные 3D-данные о сцене в реальном времени, что критически важно для построения 
карт окружения и обнаружения препятствий.

• Сохранение семантической информации: Как и монокамеры, предоставляют цветное 
изображение, пригодное для классификации объектов.

• Пассивность работы: Так же, как и монокамеры не создают помех для работы других сен-
соров.

Ограничения:  
• Зависимость от текстуры поверхности: Для успешного сопоставления стереопар поверх-

ности объектов должны иметь достаточную текстуру. Гладкие, однородные поверхности (сте-
на, ровная дорога) создают «слепые зоны».

• Высокие вычислительные затраты: Алгоритмы стереосопоставления в реальном времени 
требуют мощных процессоров.

• Чувствительность к калибровке: Точность измерений напрямую зависит от точности ка-
либровки и стабильности взаимного положения камер. Вибрации и перепады температуры 
могут нарушить калибровку.

• Унаследованные проблемы камер: Как и монокамеры, стереосистемы чувствительны к ус-
ловиям освещения.

1.3. Лидары (Light Detection and Ranging)

Принцип действия: Лидар является активным сенсором, который измеряет расстояние 
до объектов, испуская лазерные импульсы и регистрируя время их возврата после отражения 
(Time-of-Flight). Сканирующий механизм позволяет создавать высокоточные 3D-карты окру-
жения в виде облака точек (point cloud).
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Преимущества:  
• Высокая точность измерения расстояния: Погрешность измерений современных лидаров 

составляет несколько сантиметров.
• Независимость от освещения: Способны работать как днем, так и ночью, поскольку ис-

пользуют собственный источник излучения.
• Высокое угловое разрешение: Позволяют детально сканировать геометрию окружающего 

пространства, различая мелкие объекты.
Ограничения:  
• Ограниченная семантическая информация: Облако точек не содержит данных о цвете 

или текстуре, что затрудняет классификацию объектов без использования данных с камер.
• Чувствительность к погодным условиям: Туман, дождь, снег и пыль могут сильно рассе-

ивать лазерный луч, что приводит к значительному ухудшению характеристик или полному 
отказу работы.

• Высокая стоимость: Лидары с высоким разрешением остаются одним из самых дорогих 
компонентов систем автономного транспорта.

1.4. Радары (Radio Detection and Ranging)

Принцип действия: Радар — активный сенсор, работающий в радиодиапазоне. Он излуча-
ет радиоволны и детектирует отраженный сигнал, что позволяет с высокой точностью опреде-
лять расстояние до объекта и его скорость.

Преимущества:  
• Устойчивость к погодным условиям: Радары надежно работают в условиях плохой види-

мости: туман, дождь, снег.
• Измерение скорости: Уникальная способность напрямую измерять скорость приближе-

ния или удаления объектов.
• Большая дальность действия: Способны обнаруживать объекты на расстоянии сотен ме-

тров.
• Относительно низкая стоимость: Современные технологии производства делают радары 

доступными.
Ограничения:  
• Низкое угловое разрешение: Радары не могут предоставить детальную форму объекта, 

что затрудняет его точную классификацию.
• Низкая разрешающая способность: Плохо различают близко расположенные объекты.
• Чувствительность к помехам: Могут создавать взаимные помехи при работе нескольких 

радаров.

2. Практическая реализация системы стереозрения

В качестве практической реализации одного из описанных подходов была разработана и 
протестирована программа на языке Python с использованием библиотеки OpenCV. Програм-
ма реализует полный цикл обработки данных со стереокамеры: калибровка, ректификация и 
построение карты глубины.

Аппаратная конфигурация: В качестве сенсора использовалась стереокамера GXIVISION-
LS1M02 с базисом 85 мм и разрешением сенсоров 2 Мп. Обработка данных проводилась на 
компьютере с процессором AMD Ryzen 5 2600 и видеокартой NVIDIA GeForce GTX 1050 Ti.

Программный стек: Python 3.9, OpenCV 4.5, NumPy 2.3.2.
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2.1. Калибровка стереосистемы

Калибровка выполнялась с использованием шахматной доски 9 × 6 с размером клетки 
25 мм. Было захвачено 15 пар изображений под разными углами. На рис. 1 представлен при-
мер одного из таких изображений.

2.2. Ректификация изображений

На основе полученных параметров калибровки проводятся ректификационные преобра-
зования для выравнивания эпиполярных линий. 

Ректификационные преобразования — это процесс геометрического преобразования пары 
снимков одной сцены, целью которого является упрощение задачи поиска соответствий меж-
ду ними. В основе лежит эпиполярная геометрия: для каждой точки на левом изображении 
соответствующая ей точка на правом лежит на определённой линии (эпиполярной линии). 
Ректификация трансформирует оба изображения таким образом, чтобы эти эпиполярные ли-
нии стали горизонтальными и совпали по строкам. В результате этого выравнивания поиск 
соответствующих точек сводится к сопоставлению пикселей в пределах одной строки, что зна-
чительно ускоряет и повышает надёжность работы алгоритмов стереозрения, например, для 
построения карт глубины.

2.3. Построение карты глубины

Для построения карты глубины был выбран алгоритм SGBM (Semi-Global Block Matching). 
Его суть заключается в двухэтапной обработке: на первом этапе для каждого пикселя лево-
го изображения осуществляется поиск наиболее похожего участка в правом изображении в 
пределах заданного смещения, что формирует первичную оценку глубины. На втором этапе 
для увеличения точности и устранения шумов, выполняется псевдоглобальная оптимизация: 
итоговое значение смещения для каждого пикселя вычисляется с учётом значений его соседей 
по множеству направлений. Это позволяет алгоритму учитывать гладкость реальных поверх-
ностей, одновременно сохраняя чёткие границы объектов, что и обеспечивает высокую дета-
лизацию и помехоустойчивость итоговой карты.

При реализации системы стереозрения была использована реализация данного алгоритма 
из библиотеки OpenCV.

На рис. 2 и рис. 3 представлены исходные изображения с левой и правой камер соответ-
ственно. На рис. 4 представлена полученная карта глубины.

Рис. 1. Пример калибровочного изображения
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Рис. 2. Исходное изображение с левой камеры Рис. 3. Исходное изображение с правой камеры

Рис. 4. Полученная карта глубины

Выявленные ограничения: Алгоритм SGBM показал значительное ухудшение качества в ус-
ловиях низкой освещенности. На однородных поверхностях (стена, лист бумаги) наблюдают-
ся протяженные «слепые зоны».

3. Сравнительный анализ технологий

Проведённый анализ ключевых аппаратных платформ компьютерного зрения позволяет 
систематизировать их характеристики по ряду наиболее важных для автономного транспор-
та критериев. Монокамеры и стереокамеры обеспечивают семантическое понимание сцены, 
но зависимы от освещения. Результаты, полученные в практической части, свидетельствуют 
о целесообразности использования стереокамер в контролируемых условиях освещения при 
наличии текстурных поверхностей. Лидары предоставляют точные геометрические данные, 
но уязвимы к погоде, а также обладают крайне высокой стоимостью. Радары надежны для из-
мерения дистанции и скорости в любую погоду, но обладают низким разрешением. 

Сводные данные представлены в табл. 1.
Таблица 1

Сравнение технологий
Критерий / Технология Монокамеры Стереокамеры Лидары Радары

1 2 3 4 5
Точность глубины Низкая Средняя Высокая Средняя
Семантика Высокая Высокая Низкая Низкая
Работа ночью Плохая Плохая Хорошая Хорошая
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1 2 3 4 5
Устойчивость к погоде Низкая Низкая Низкая Высокая
Стоимость Низкая Средняя Высокая Средняя
Вычислительная нагрузка Высокая Высокая Средняя Низкая

Заключение

В ходе проведённого исследования был выполнен сравнительный анализ ключевых аппа-
ратных платформ компьютерного зрения для систем автономного транспорта. Установлено, 
что ни одна из технологий не является универсальным решением. Каждая обладает набором 
преимуществ и ограничений, что обуславливает тенденцию к созданию мультимодальных 
сенсорных систем, в которых комбинируются данные от разных сенсоров.
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РАСПОЗНАВАНИЕ ЛИЦ С ПОМОЩЬЮ СВЕРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ

Воронежский государственный университет

П. С. Барков

Аннотация. Целью данной работы является практическое исследование процесса соз-
дания системы распознавания лиц на основе сверточных нейронных сетей. В статье де-
тально рассматривается полный цикл построения модели — от подготовки данных до 
обучения и тестирования. Основное внимание уделено реализации компактной архитек-
туры CNN и применению функции потерь Triplet Loss для генерации эмбеддингов. Пред-
ставлен рабочий пример на Python, включающий построение модели, процесс обучения 
и оценку качества в различных тестовых сценариях. Практическим результатом работы 
стала функционирующая модель продемонстрировавшая способность к обобщению на 
новых данных.
Ключевые слова: векторное представление (эмбеддинг), сверточные нейронные сети, 
распознавание лиц, функции потерь, метрики расстояния, Triplet Loss, машинное обуче-
ние, архитектура, нормализация, оптимизация.

Введение

Системы распознавания лиц активно развиваются и внедряются в различные сферы. В об-
ласти безопасности они обеспечивают контроль доступа на различные объекты через систе-
мы видеонаблюдения. Банки активно внедряют оплату с помощью распознавания человека по 
лицу. В большинстве смартфонов доступна разблокировка через Face ID и аналогичные систе-
мы. Массовое распространение данной технологии легко объяснить ее удобством и простотой 
интеграции.

Для того чтобы сравнить несколько лиц их необходимо представить в числовом виде, от-
ражающем значимые признаки внешности человека. Таким представлением являются эмбед-
динги. Каждое изображение преобразуется в массив чисел, где комбинация этих значений от-
ражает уникальные параметры лица человека.

Для сравнения полученных векторных представлений используются специальные метри-
ки расстояния. Косинусное сходство, измеряющее насколько пара не нулевых векторов ори-
ентирована в одном направлении и евклидово расстояние, оценивающее прямолинейную бли-
зость между ними. Лица на изображениях признаются одинаковыми, когда сходство между их 
эмбеддингами превышает пороговое значение. 

Основным современным подходом для генерации векторных представлений являются 
сверточные нейронные сети, которые демонстрируют высокую эффективность в обработке 
изображений. Ключевым элементом архитектуры CNN является операция свертки. Ее смысл 
заключается в применении фильтров (ядер) к различным участкам изображения. Перемещая 
фильтр по сетке необходимо проводить операции поэлементного умножения соответствую-
щих значений фильтра и текущей области и последующего суммирования результатов для по-
лучения карты признаков.

Данная статья рассматривает весь цикл работы системы распознавания и сопровождает 
каждый шаг практическими примерами.

1. Подготовка данных

Перед непосредственной реализацией алгоритмов машинного обучения и построением 
архитектуры нейронной сети необходимо сформировать качественную обучающую выборку.
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В ходе работы стоит учитывать, что способность системы к обобщению и адаптации в ре-
альных условиях эксплуатации определяется разнообразием обучающих данных. Для дости-
жения хороших результатов необходимо включать в выборку лица с различными характери-
стиками:

– разный возраст, пол и этническая принадлежность;
– разнообразные эмоциональные выражения;
– различные ракурсы и повороты головы;
– изображения, сделанные в разных условиях освещения.
Для демонстрации был выбран датасет в котором содержатся множество фотографий ста 

восьмидесяти пяти известных людей. Хоть для получения достаточно качественной модели 
требуются миллионы различных изображений, но ввиду ограниченности вычислительных ре-
сурсов для оптимизации времени обучения на каждого человека было выбрано по пятьдесят 
изображений.

2. Архитектура

Архитектура сверточной нейронной сети является главным фактором в процессе извле-
чения признаков из изображений лиц. От выбора архитектуры напрямую зависят ключевые 
характеристики системы: точность распознавания, вычислительная эффективность, устойчи-
вость к изменениям условий съемки и способность к обобщению.

Основная задача архитектуры заключается в последовательном преобразовании входного 
изображения в компактное векторное представление, которое сохраняет уникальные харак-
теристики лица и инвариантно к несущественным изменениям. Каждый компонент архитек-
туры вносит свой вклад в этот процесс:

Сверточные слои выполняют основную работу по извлечению признаков, применяя филь-
тры к различным областям изображения. Размер ядра свертки определяет величину области, 
анализируемой для выделения признаков. Меньшие ядра позволяют выделять более локаль-
ные особенности, такие как края и текстуры, в то время как большие ядра охватывают обшир-
ные области помогая выделить общие черты.

Пулинговые слои постепенно уменьшают пространственную размерность карт признаков, 
сохраняя при этом наиболее значимую информацию. Одним из популярных подходов являет-
ся MaxPooling, который выбирает максимальное значение в области. Это увеличивает устой-
чивость признаков к малым смещениям и искажениям.

Нормализация стабилизирует процесс обучения, уменьшая внутреннее ковариационное 
смещение. Это позволяет увеличить темпы обучения и улучшить обобщающую способность 
модели.

Для демонстрации принципов работы системы распознавания лиц была разработана ком-
пактная нейронная сеть, реализующая базовые подходы к извлечению признаков.

Сеть состоит из четырех последовательных сверточных блоков, каждый из которых вклю-
чает сверточный слой с ядром 3×3, операцию батч-нормализации, активацию ReLU и слой 
MaxPooling. Количество фильтров последовательно увеличивается от 32 до 256, что позволяет 
сети извлекать признаки разного уровня абстракции.

Ключевой особенностью архитектуры является использование глобального усредняющего 
пулинга на последнем этапе обработки. Этот подход заменяет традиционные полносвязные 
слои. Этот подход значительно сокращает количество параметров модели и снижает риск пе-
реобучения. Финальный этап включает линейное преобразование в эмбеддинг размерностью 
128 элементов с L2-нормализацией.
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3. Функция потерь

Функции потерь представляют собой математические конструкции, которые количествен-
но оценивают расхождение между предсказанными и эталонными значениями. В контексте 
машинного обучения они выполняют две основные функции: служат целевым критерием для 
оптимизации параметров сети и определяют направление градиентного спуска в процессе об-
учения.

В современных системах распознавания лиц существует несколько видов функций потерь, 
каждая из которых имеет уникальный подход к оптимизации пространства признаков. Одной 
из самых известных является ArcFace, направленная на повышение дискриминативной спо-
собности изученных признаков за счёт добавления углового интервала между различными 
классами.

Большинство функций демонстрируют превосходную производительность на крупномас-
штабных наборах данных. Однако они требуют значительных вычислительных ресурсов и 
сложны в реализации, что делает их не подходящими для небольших проектов.

Для обучения модели в примере использовалась такая функция как Triplet Loss. Основной 
принцип работы которой заключается в сравнительном обучении на тройках изображений. 
На вход подаются три вида значений: якорь (anchor) исходное изображение, положительное 
(positive) фото того же человека и отрицательное (negative) изображение другого человека. 
Цель обучения модели заключается в минимизации расстояния между anchor и positive с од-
новременной максимизацией разницы с negative.

Triplet Loss обладает рядом преимуществ, среди которых можно отметить ее простоту и 
интуитивную понятность. Данный подход не требует введения дополнительных слоев в ар-
хитектуру нейронной сети, что сохраняет вычислительную эффективность модели. Функция 
демонстрирует хорошую эффективность даже при работе с ограниченными наборами данных. 
Кроме того, она напрямую оптимизирует метрики расстояния в пространстве эмбеддингов, 
обеспечивая целенаправленное обучение.

Однако ключевым ограничением данной функции является ее зависимость от качества 
обучающих троек. Если модель обучается преимущественно на простых примерах, где нега-
тивные образцы очевидно отличаются от якорных изображений, система не приобретает спо-
собность различать лица со схожими чертами. Это приводит к тому, что в реальных условиях, 
когда встречаются визуально похожие люди разных классов, модель может демонстрировать 
низкую точность распознавания.

4. Обучение модели

Процесс обучения нейронной сети представляет собой итеративную оптимизацию, в ходе 
которой модель постепенно настраивает свои внутренние параметры для минимизации функ-
ции потерь. Это означает, что сеть учится преобразовывать пиксели изображения в компакт-
ные векторные представления, отражающие уникальные характеристики каждого человека. 
Главную роль в этом процессе играют параметры оптимизации, каждый из которых оказывает 
влияние на конечный результат.

Learning rate определяет величину шага, с которой модель корректирует свои веса на ка-
ждой итерации. Слишком высокое значение этого параметра (0.01 и выше) приводит к неста-
бильности обучения и невозможности схождения к оптимуму. В то время как слишком низ-
кое (0.0001 и ниже) значительно замедляет процесс обучения. В данной работе использовался 
адаптивный алгоритм Adam с начальным learning rate 0.001. Данный алгоритм автоматически 
регулирует величину шага для каждого параметра индивидуально. Это особенно важно для 
глубоких сетей, где градиенты могут существенно различаться по величине в разных слоях.
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Размер батча напрямую влияет на стабильность и скорость обучения. Малые батчи (16–32 
образца) обеспечивают более частые обновления весов и лучше обобщение, но могут приво-
дить к шумным градиентам. Большие батчи (64–128) дают более точную оценку градиента, но 
требуют больше памяти и могут застревать в локальных минимумах. Для примера был выбран 
размера батча 32, который представляет собой компромисс между оптимизацией и точностью.

Количество эпох обучения должно быть достаточным для сходимости модели, но не чрез-
мерным, чтобы избежать переобучения. Мониторинг функции потерь на валидационной вы-
борке позволяет определить момент, когда дальнейшее обучение перестает улучшать качество 
модели. А использование ранней остановки (early stopping) при отсутствии улучшений в тече-
ние нескольких эпох позволяет предотвратить переобучения и сэкономить время. Для тесто-
вого примера число эпох было установлено на 30. Это значение позволяет завершить обучение 
в разумные сроки, сохраняя при этом достаточное количество итераций для адаптации весов 
модели к особенностям данных.

5. Тестирование

Для оценки работоспособности обученной модели было проведено три типа тестов, демон-
стрирующих различные сценарии использования системы распознавания лиц. Для сравнения 
эмбеддингов в тестах использовалось косинусное сходство. Пороговое значение для принятия 
решения о принадлежности лиц одному человеку было установлено на уровне 0.6.

5.1. Верификация известного человека

В первом тесте использовались две фотографии одного человека из исходного датасета 
(рис. 1, 2), однако сами изображения не входили в тренировочную выборку. Модель успешно 
распознала принадлежность лиц одному человеку, показав значение сходства 0.826. Это де-
монстрирует способность модели к обобщению и работе с новыми изображениями известных 
ей людей.

Рис. 1. Фото известного человека №1 Рис. 2. Фото известного человека №2

5.2. Сравнение разных людей

Второй тест проверял способность модели отличать двух разных людей (рис. 3, 4), не уча-
ствовавших в процессе обучения модели. Система отработала, корректно указав их как раз-
ных людей. Значение косинусного сходства 0.4077, что значительно ниже установленного по-
рога в 0.6. Это показывает способность модели к работе с новыми лицами.
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Рис. 3. Фото случайного человека №1 Рис. 4. Фото случайного человека №2

5.3. Работа с неизвестным человеком

Третий тест, проверяет работу системы с двумя изображениями одного человека, отсут-
ствующего в тренировочном наборе (рис. 5, 6). Модель продемонстрировала уровень сходства 
0.58, что ниже установленного порога классификации. Это означает, что модель не смогла од-
нозначно определить, принадлежат ли оба изображения одному человеку или нет.

Рис. 5. Фото человека, отсутствующее 
в наборе №1

Рис. 6. Фото человека, отсутствующее 
в наборе №2

Заключение

Проведенное исследование продемонстрировало работоспособность подхода к распозна-
ванию лиц на основе сверточных нейронных сетей. В ходе работы была успешно создана не-
большая модель, способная преобразовывать изображения лиц в векторные представления. 
Модель продемонстрировала способность к обобщению, показав работоспособность не толь-
ко на данных из обучающей выборки, но и на новых изображениях.

Однако полученная модель далека от идеала и имеет существенные ограничения. Точность 
ее решений значительно уступает промышленным системам распознавания лиц. Причиной 
этому послужил ограниченный объем тренировочных данных и упрощенная архитектура сети.

Несмотря на существующие ограничения, разработанная система показывает работо-
способность концепции и составляет основу для дальнейших исследований в области рас-
познавания лиц. Полученные результаты и выводы могут быть использованы как отправная 
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точка для создания более совершенных систем с улучшенными характеристиками точности 
и надежности.
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Аннотация. Настоящая работа посвящена разработке интеллектуального индикатора, 
предназначенного для прогнозирования направлений движения цен акций на фондовом 
рынке. Индикатор использует гибридный подход, объединяющий методы фрактального 
анализа (индекс Херста, фрактальная размерность) и ансамблевые алгоритмы машинно-
го обучения (Random Forest / XGBoost). В отличие от классических технических индика-
торов (SMA, RSI, MACD), гибридная модель способна учитывать нелинейный и хаотич-
ный характер финансовых временных рядов. Программный продукт реализован на языке 
Python с использованием библиотек pandas и scikit-learn. Тестирование на исторических 
данных (2020–2025 гг.) показало, что разработанный индикатор обеспечивает точность 
прогноза в диапазоне 65–75 % и демонстрирует положительное превышение доходности 
рассматриваемой в статье стратегии над стратегией «Buy and Hold» по показателю коэф-
фициента Шарпа.
Ключевые слова: фондовый рынок, временной ряд, фрактальный анализ, индекс Херста, 
фрактальная размерность, машинное обучение, Random Forest, XGBoost, волатильность, 
технический индикатор.

Введение

Современный фондовый рынок является динамичной и сложной системой, характеризую-
щейся высокой волатильностью и нелинейными зависимостями, что снижает эффективность 
традиционных методов анализа. Активное развитие вычислительных технологий открыва-
ет возможности для создания новых интеллектуальных инструментов, способных выявлять 
скрытые закономерности в финансовых данных. Особый интерес представляет сочетание 
фрактального анализа и алгоритмов машинного обучения для создания индикаторов, учиты-
вающих нелинейный характер ценовых рядов [2]. Цель работы — разработка и исследование 
гибридного индикатора прогнозирования направлений движения акций, основанного на ин-
теграции фрактальных характеристик и ансамблевых методов машинного обучения.

1. Математическая основа гибридного индикатора 

Архитектура разработанного индикатора основана на представлении временного ряда до-
ходностей как стохастического процесса [3] и использует два ключевых компонента: блок фрак-
тального анализа для извлечения признаков и блок машинного обучения для прогнозирования.

1.1. Фрактальные признаки и логика построения

Для количественного описания структуры временного ряда использовались фрактальные 
показатели, отражающие наличие долгосрочной памяти и степень трендовости рынка [2]. 
Ключевым параметром является Индекс Херста ( ),H  который рассчитывается для скользя-
щего окна данных (30 дней) и интерпретируется следующим образом: 

– (0,0.5)H ∈  — анти-персистентный процесс, цены склонны возвращаться к среднему;
– 0.5H = — случайное блуждание (эффективный рынок);
– (0.5,1)H ∈  — персистентный процесс, наличие устойчивого тренда.
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Дополнительно рассчитывается фрактальная размерность ( ),FD  связанная с индексом 
Херста соотношением 2 ,FD H= −  и отражающая степень «шероховатости» графика цены. 
Чем выше ,FD  тем хаотичнее движение цен.

В качестве функции прогнозирования f  рассматривается модель индикатора, которая 
имеет вид:

	 ( )1 , , ,t t t ty f X H FD+ =  
где f  — функция прогнозирования;

t  — промежуток времени;
tX  — технические индикаторы в момент t;
tH  — индекс Херста в момент t;

tFD  — фрактальная размерность в момент .t

1.2. Выбор и настройка модели машинного обучения

Для реализации функции f  были выбраны ансамблевые методы: Random Forest (RF) и 
XGBoost. Модель RF была выбрана в качестве базовой благодаря её устойчивости к шуму, низ-
кой склонности к переобучению и возможности оценки значимости признаков [4]. Оптимиза-
ция гиперпараметров (количество деревьев, максимальная глубина) проводилась с использо-
ванием кросс-валидации и процедуры грид-поиска по метрике F1-Score.

2. Результаты тестирования и сравнение стратегий

Тестирование индикатора проводилось на исторических данных дневных котировок ак-
ций (AAPL, MSFT) за период 2020–2025 гг. Оценка эффективности включала классификаци-
онные и финансовые метрики. Результаты сравнения модели Random Forest с классическими 
индикаторами представлены в табл.1 (для иллюстрации итогов):

Таблица 1 
Сравнение эффективности гибридного индикатора с классическими инструментами 

(акции AAPL)
МетрикаИндикатор Accuracy (%) F1-Score Коэффициент Шарпа

Buy & Hold – – ~0.75
SMA (50) 53.2 0.51 0.81
MACD 55.1 0.55 0.95
Гибридный (RF + Фракталы) 68.5 0.69 1.15

Как видно из табл. 1, гибридный индикатор, использующий фрактальные и лаговые при-
знаки, демонстрирует значительное превосходство над классическими инструментами по всем 
ключевым метрикам. Точность прогноза (Accuracy) стабильно находится в диапазоне 65–75 %. 
Ключевым финансовым результатом является более высокий коэффициент Шарпа (Sharpe 
Ratio), что свидетельствует о получении более высокой доходности с поправкой на риск. Важ-
но отметить, что включение фрактальных признаков позволяет модели лучше адаптироваться 
к изменению рыночных режимов (от тренда к флэту — цены склонны к случайному блужда-
нию — они возвращаются к среднему), поскольку индекс Херста количественно оценивает 
долгосрочную память системы.
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Заключение

В результате работы был разработан и протестирован гибридный индикатор прогнозиро-
вания направлений движения акций на основе сочетания фрактального анализа и методов 
машинного обучения. Проведённое тестирование на исторических данных подтвердило, что 
интеграция фрактальных характеристик в модель Random Forest позволяет достичь высокой 
точности прогноза (до 75 % на тестовой выборке) и значительно повысить финансовую эф-
фективность торговой стратегии по сравнению с пассивным инвестированием и стратегиями, 
основанными на классических технических индикаторах. Практическая значимость работы 
заключается в возможности применения разработанного индикатора для поддержки инве-
стиционных решений, автоматизации торговых систем и дальнейших исследований в области 
финансовой эконометрики [1, 3].
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СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ АВТОМАТИЧЕСКОЙ 
ФИЛЬТРАЦИИ РЕЧИ В ЯЗЫКАХ С РАЗЛИЧНОЙ СТРУКТУРОЙ
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Аннотация. В статье рассматриваются методы фильтрации текста после автоматическо-
го распознавания речи (ASR) с учётом морфологической структуры различных языков. 
Анализируются словарные методы, регулярные выражения, морфемный разбор, лемма-
тизация и контекстные модели, оцениваются их преимущества и ограничения. Приведе-
ны примеры для агглютинативных, флективных и аналитических языков. Показано, что 
комбинирование методов в пайплайнах повышает точность фильтрации и компенсирует 
ограничения отдельных подходов.
Ключевые слова: автоматическое распознавание речи, ASR, фильтрация текста, морфо-
логическая вариативность, словарные методы, регулярные выражения, морфемный раз-
бор, лемматизация, контекстные модели, ошибки распознавания, накопительные эффек-
ты ошибок, автокоррекция, агглютинативные языки, флективные языки, аналитические 
языки, пайплайны фильтрации.

Введение

Автоматическая фильтрация текста после распознавания речи (ASR) является важной за-
дачей для мультиязычных систем обработки аудио- и видеоконтента, включая модерацию ма-
териалов, автоматическое создание субтитров и поиск ключевых слов. Эффективность филь-
трации зависит от морфологической структуры языка и ошибок распознавания, таких как 
пропуски слов, фонетические и орфографические искажения. Во флективных языках, как рус-
ский, множество словоформ снижает эффективность простых словарей; в агглютинативных 
языках, например финском, длинные аффиксальные цепочки требуют морфемного анализа; в 
аналитических языках, таких как английский, формы слов относительно стабильны, что по-
зволяет использовать регулярные выражения и списки ключевых слов.

Цель работы — сопоставить методы фильтрации текста после ASR для разных типов язы-
ков и показать ограничения каждого подхода. В качестве примеров рассматриваются русский, 
финский и английский языки.

1. Классификация языков по трудностям фильтрации

1.1. Влияние морфологической структуры и особенностей слова 
на эффективность фильтрации

Каждый язык обладает своей уникальной структурой и особенностями словообразования, 
что определяет, как формируются слова и выражаются грамматические значения. Для систе-
матизации языков и оценки сложности их автоматической обработки часто выделяют три ус-
ловные группы: агглютинативные, флективные и аналитические языки [1]. 

Агглютинативные языки формируют слова путем последовательного присоединения аф-
фиксов к корню — частей слова, которые добавляют грамматическое или смысловое значение, 
например суффиксы. При этом слова могут образовывать практически бесконечные составные 
конструкции. Примерами таких языков являются финский, турецкий, венгерский или япон-
ский. Для автоматической фильтрации отдельное слово может встречаться в разных формах 
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внутри сложных слов. Простое совпадение последовательности символов часто оказывается 
недостаточным, так как комбинация аффиксов может случайно содержать нужную последо-
вательность. Важно ориентироваться на корень и аффиксы, учитывая, что корень сам может 
подвергаться фонетическим изменениям, например чередованию согласных в финском. Поэ-
тому фильтрация требует морфемного анализа и учета фонетических правил, что значительно 
усложняет алгоритмы, особенно при обработке текста после ASR, где могут присутствовать 
ошибки и нестандартные формы слов.

Флективные языки, к которым относится русский, характеризуются изменяемыми слово-
формами. Словоформа — это конкретная грамматическая форма слова, которая появляется 
в речи или тексте и несёт информацию о падеже, числе, роде, времени, лице или наклонении 
[2]. Например, существительное «стол» имеет словоформы «стол», «стола», «столу», «столом», 
«столе», а глагол «идти» — «иду», «идёшь», «идут», «шёл», «пошёл». 

Словоформу следует отличать от леммы — базовой словарной формой слова, к которой от-
носятся все её словоформы. Для приведённых примеров леммами будут «стол» и «идти». Это 
различие открывает возможность применения специализированных методов анализа слово-
форм, что будет рассмотрено далее [1, 3, 4].

В отличие от агглютинативных языков, где слова строятся из относительно стабильного 
корня и аффиксов, в флективных языках изменения словоформ могут сильно менять внешний 
вид слова. В результате одна и та же лексическая единица может принимать формы, которые 
почти не похожи друг на друга.

Аналитические языки, такие как английский или китайский, используют преимуществен-
но неизменяемые слова, а грамматические отношения выражаются через порядок слов, слу-
жебные частицы или предлоги. Формы слов относительно стабильны, за редкими исключени-
ями, что упрощает фильтрацию: для большинства случаев достаточно знать исходное слово и 
искать его в тексте. Например, глагол walk может встречаться как walks, walked, walking, что 
легко учесть с помощью регулярных выражений. Возможные сложности возникают с идиома-
ми, сленгом или производными формами, которые требуют дополнительного внимания при 
поиске целевых слов. Тем не менее, базовые методы фильтрации, такие как словари и регуляр-
ные выражения, остаются эффективными для выявления ключевых слов и выражений.

Важно понимать, что деление языков на группы не строгое: реальные языки могут сочетать 
черты разных типов. Это проявляется, например, в научной или технической терминологии, 
заимствованных словах и взаимодействии с различными областями языка. Иногда флектив-
ный язык использует элементы агглютинативного типа в сложносоставных терминах, а ана-
литический язык может включать морфологические модификации или составные формы в 
специализированной лексике. Понимание таких особенностей необходимо для выбора адек-
ватных методов фильтрации, оценки их эффективности и минимизации ошибок при обработ-
ке текста или аудио. 

Такой подход позволяет системно оценить, насколько сложно или просто выявлять отдель-
ные слова для фильтрации, и служит основой для последующего анализа методов автоматиче-
ской обработки речи с учётом морфологической специфики каждого языка.

1.2. Примеры влияния морфологической структуры на фильтрацию речи

На примере агглютинативного языка, финского, далее будут рассмотрены слова jalka 
(«нога») и sana («слово»). В финском слова строятся из корня и последовательных аффиксов, 
которые добавляют грамматическое или смысловое значение. В слове jalka формы вроде jalan, 
jalkaniin, jalkojani показывают, что корень jal- остаётся узнаваемым, и на первый взгляд кажет-
ся, что для фильтрации можно просто опираться на корень: отделив аффиксы с конца, можно 
получить основу для дальнейшей работы.
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Однако на практике структура языка и фонетические изменения усложняют задачу филь-
трации. Для примера можно рассмотреть слово sana («слово») и его производные формы. 
Простые производные, такие как sanan (родительный падеж), sanoja (множественное число) 
и sanat (множественное число, именительный падеж), сохраняют смысл исходного слова, и их 
корректная идентификация требует морфемного анализа или лемматизации.

Сложности появляются с составными словами, например sanakirja («словарь»), где корень 
sana встречается вместе с корнем kirja («книга»). В этом случае графическое совпадение с кор-
нем не гарантирует, что значение слова соответствует исходному «слово». Простое выделение 
корня может привести к ложным срабатываниям, если цель фильтрации — именно выделение 
слова sana.

Ещё более сложным случаем являются семантические сдвиги, например sanomat («сооб-
щения, новости»), где слово связано с корнем sana, но смысловое значение отличается от ис-
ходного. Морфемный анализ выявляет корень, но без учета контекста алгоритм не сможет 
различить «слово» и «новости».

Таким образом, эффективная фильтрация требует сочетания подходов. Морфемный ана-
лиз и лемматизация позволяют корректно идентифицировать словоформы и простые про-
изводные, но для различения составных слов и семантически смещённых форм необходимо 
использовать модели, учитывающие контекст, включая нейросетевые алгоритмы обработки 
текста. Кроме того, следует учитывать фонетические изменения корня, например чередова-
ния согласных, которые встречаются при образовании различных форм. Такой комплексный 
подход обеспечивает точную фильтрацию, минимизируя ложные срабатывания и учитывая 
графическую, морфологическую и семантическую специфику финского языка.

Флективные языки, такие как русский, характеризуются значительной изменяемостью сло-
воформ. Каждое слово может иметь десятки и сотни форм в зависимости от падежа, числа, 
рода, времени, лица и наклонения. При этом некоторые формы могут сильно отличаться от 
исходной леммы: например, глагол «идти» проявляется как «иду», «идёшь», «шёл», «пошёл», 
где формы «иду» и «пошёл» почти не связаны визуально с леммой [5].

Такая вариативность делает невозможным использование простых словарей или совпа-
дений по корню: для эффективной фильтрации необходимо заранее составить словарь всех 
словоформ с привязкой к лемме или использовать морфологический анализ. В процессе ра-
боты с ASR-транскрипциями возникает дополнительная сложность: ошибки распознавания и 
нестандартные варианты написания могут ещё сильнее удалять словоформу от её леммы или 
приводить к заведомо неверной форме, например из «иду» получаем «еду».

Таким образом, в флективных языках задача фильтрации требует комбинированного под-
хода: морфологического разбора, сопоставления с леммой и учёта всех возможных словоформ. 
В отличие от агглютинативных языков, где достаточно выделить корень слова, в флективных 
языках простое выделение корня не обеспечивает корректной фильтрации; алгоритм должен 
быть готов обрабатывать десятки словоформ для одной леммы, чтобы избежать ложных сра-
батываний и пропусков целевых слов.

В аналитических и фиксированных языках, таких как английский, слова в основном не-
изменяемы, а грамматические категории выражаются отдельными служебными словами или 
фиксированными формами. Например, глагол walk может принимать лишь ограниченное 
число форм: walk, walks, walked, walking. Фильтрация таких слов может выполняться с помо-
щью точных списков слов и регулярных выражений, например walk(s|ed|ing)?, что позволяет 
выявлять все формы глагола. Основная сложность возникает с многословными конструкци-
ями и идиомами, смысл которых не выводится из отдельных слов, например kick the bucket — 
«умереть». Для корректной фильтрации такие выражения нужно учитывать целиком, а не по 
отдельным словам, что также можно реализовать через регулярные выражения, охватываю-
щие стандартные грамматические формы.
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2. Методы фильтрации текста после ASR

2.1. Методы фильтрации: преимущества и ограничения

Фильтрация текста после автоматического распознавания речи опирается на набор мето-
дов, направленных на выявление целевых слов, снижение ложных срабатываний и компен-
сацию ошибок ASR. Применимость каждого метода сильно зависит от типа языка и степени 
морфологической изменчивости.

Черные и белые списки слов [6] основываются на поиске точных совпадений с заранее 
заданным набором словоформ. Такой подход прост, стабилен и хорошо работает в языках с 
ограниченной морфологией или малой вариативностью форм. Его основной недостаток — 
строгая зависимость от точной орфографии: любое отклонение, вызванное словоформой или 
ошибкой ASR, приводит к пропуску. В агглютинативных языках возможности метода допол-
нительно ограничены огромным числом потенциальных форм, которые невозможно перечис-
лить вручную.

Регулярные выражения [7] позволяют задавать шаблоны, включающие окончания, при-
ставки или устойчивые конструкции. Они особенно эффективны в аналитических языках, где 
количество словоформ невелико и может быть описано внутри одного выражения. В языках 
с богатой морфологией этот подход быстро упирается в масштаб: десятки возможных сочета-
ний аффиксов делают выражения чрезмерно громоздкими и неполными. Ошибки ASR — про-
пуски, слияние слов, подстановки — дополнительно разрушают ожидаемые паттерны, снижая 
надёжность метода.

Морфемный разбор и лемматизация представляют собой отдельные, но тесно связанные 
методы. Морфемный разбор выделяет корень и аффиксы, а лемматизация приводит слово-
форму к словарной основе. Эти методы часто используются совместно со словарями лемм. 
Такой подход наиболее эффективен в флективных языках, где одна лемма имеет множество 
форм, а поиск по точному совпадению не работает. Основное ограничение обоих методов — 
зависимость от полноценной морфологической базы и корректной орфографии: искажённые 
ASR-формы нередко оказываются нераспознаваемыми или приводят к неверной лемме.

Контекстные модели, включая нейросетевые, анализируют окружение слова и позволяют 
различать омонимии, производные формы и конструкции, чья семантика не определяется по 
отдельным частям. Этот подход особенно важен при работе с производными словами, иди-
омами и ошибками ASR, которые формально похожи на целевые единицы, но имеют другое 
значение. Ограничения связаны с вычислительной стоимостью, зависимостью от обучающих 
данных и возможными ошибками в случаях редких или нестандартных искажений.

Эффективная фильтрация текста после ASR требует комбинирования методов: словари 
подходят для строго фиксированных форм, регулярные выражения — для аналитических 
структур, морфологический анализ — для флективных систем, а контекстные модели — для 
сложных или неоднозначных случаев. Совместное использование подходов позволяет ком-
пенсировать их ограничения и обеспечивать устойчивую работу фильтрации в условиях оши-
бок распознавания и морфологической вариативности [8].

2.2. Ошибки ASR и их влияние на фильтрацию текста

Словарные методы чувствительны к любым отклонениям от ожидаемой формы слова. Про-
пуск буквы или слияние слов приводит к тому, что точное совпадение не находится, и целе-
вое слово остаётся незамеченным. Для флективных языков, где словоформы уже варьируются 
естественным образом, ошибки ASR усугубляют проблему, что увеличивает количество «несо-
поставимых» форм и требует расширенных словарей или дополнительных методов коррекции.
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Регулярные выражения, хотя и обеспечивают более гибкие шаблоны поиска, также подвер-
жены влиянию ошибок распознавания. Непредсказуемые вставки, пропуски или замены сим-
волов могут разрушить шаблон и сделать паттерн неприменимым. Особенно уязвимы кон-
струкции, основанные на предсказуемых окончаниях или устойчивых сочетаниях: малейшее 
отклонение от ожидаемой формы делает поиск невозможным и повышает риск пропуска це-
левых слов.

Морфологический разбор и лемматизация частично снижают влияние ошибок ASR: алго-
ритм может привести словоформу к базовой форме, нивелируя часть искажений. Однако при 
значительных искажениях или редких ошибках, которых нет в морфологической базе, кор-
ректное определение леммы становится невозможным. Это особенно критично для флективных 
языков, где одна лемма может иметь десятки форм, а каждая ошибка ASR создаёт новую, потен-
циально «неизвестную» форму, что не упрощает, а иногда даже усложняет работу алгоритма.

Контекстные модели (нейросетевые) способны частично компенсировать ошибки ASR, 
определяя слово по окружению и смыслу. Они эффективны для распознавания омонимов, 
устойчивых выражений и производных форм, которые иначе могли бы быть пропущены. Ос-
новное ограничение таких моделей — необходимость большого обучающего корпуса с типич-
ными ошибками распознавания и высокая вычислительная стоимость. Чем меньше ошибок в 
исходной транскрипции, тем сложнее создать обучение, покрывающее редкие искажения.

Следует отметить накопительные эффекты ошибок: не все ошибки становятся явными 
сразу. Например, неверная словоформа может привести к неправильной лемме или морфем-
ной разбивке, что на следующем этапе обработки создаёт новые ошибки. Так, слово «иду», 
распознанное как «еду», может привести к неверной классификации смысла или семантики, 
создавая каскад ложных срабатываний и пропусков.

Важным шагом для снижения влияния ошибок ASR является автокоррекция. Она не ре-
шает задачу фильтрации напрямую, но исправляет часть орфографических искажений, что 
делает работу словарей, регулярных выражений и морфологического разбора более надёжной. 
Несмотря на возможные ошибки подбора форм, метод практически единственный, который 
напрямую уменьшает негативное влияние ошибок ASR на последующую фильтрацию.

Таким образом, ошибки ASR являются ключевым фактором, ограничивающим точность 
фильтрации текста. Любой метод, хорошо работающий на идеальном материале, теряет эф-
фективность при наличии транскрипционных искажений. Понимание природы этих ошибок 
и их накопительного эффекта позволяет выстраивать стратегии компенсации и подготавлива-
ет почву для построения комплексных пайплайнов фильтрации, которые будут рассмотрены 
в следующем разделе.

2.3. Комбинирование методов и построение пайплайнов

Для эффективной фильтрации текста после ASR отдельные методы редко работают в изо-
ляции, особенно в условиях ошибок распознавания и морфологической вариативности язы-
ков. На практике создаются пайплайны — последовательности методов, где каждый шаг ком-
пенсирует ограничения предыдущего.

Типичная схема включает несколько уровней обработки. Сначала применяется автокор-
рекция, которая исправляет часть орфографических искажений, снижая влияние ошибок ASR 
на последующие методы. Затем, в зависимости от морфологического типа языка (агглюта-
тивного, флективного, аналитического), словарные проверки и регулярные выражения ищут 
целевые слова и устойчивые конструкции, используя исправленный текст. Морфологический 
разбор и лемматизация позволяют учитывать все словоформы и корректно сопоставлять их 
с леммами. Завершающий уровень могут составлять контекстные модели, которые различают 
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значения производных форм и омонимов, а также учитывают смысловую зависимость слов в 
предложении, исключая возможные ошибки морфемных и словарных моделей.

Комбинирование методов уменьшает накопительные эффекты ошибок, когда неверная 
распознанная словоформа может привести к ошибкам на следующих этапах обработки. Вы-
страивание пайплайна с учётом особенностей языка и предполагаемых ошибок ASR обеспечи-
вает более устойчивую фильтрацию текста и позволяет адаптировать систему под различные 
группы языков и морфологические типы. При этом для каждого языка пайплайн приходится 
настраивать индивидуально: универсального решения не существует, и оптимальная схема 
создаётся из набора частных решений с учётом конкретных особенностей языка.

Заключение

Фильтрация текста после автоматического распознавания речи является комплексной за-
дачей, где эффективность каждого метода зависит от морфологической структуры языка и 
характера ошибок ASR. Простые подходы, такие как словари или регулярные выражения, хо-
рошо работают на ограниченных формах, но быстро теряют точность при изменяемых или 
сложных словоформах. Морфологический разбор и лемматизация позволяют учитывать ва-
риативность слов, а контекстные модели помогают различать омонимы и производные фор-
мы, учитывая смысловую зависимость слов в предложении.

Ошибки ASR — пропуски, искажения, слияния слов — существенно снижают эффектив-
ность всех методов, создавая накопительные эффекты и требуя специальных решений для 
компенсации. Автокоррекция выступает важным инструментом, который исправляет часть 
орфографических искажений и повышает надёжность последующей фильтрации.

На практике успешная фильтрация достигается через комбинирование методов в пайплай-
нах, где каждый шаг компенсирует ограничения предыдущего и учитывает особенности кон-
кретного языка. Универсального решения не существует: эффективные системы строятся из 
набора частных подходов, адаптированных под морфологию и характер ошибок ASR. Такой 
комплексный подход обеспечивает устойчивость фильтрации, минимизирует ложные сраба-
тывания и повышает точность выявления целевых слов и выражений в транскрибированном 
материале.
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УДК 004.932

ПРИМЕНЕНИЕ МОДЕЛЕЙ КОМПЬЮТЕРНОГО ЗРЕНИЯ 
ДЛЯ АНАЛИЗА ГУСТОТЫ СТОЯНИЯ СОИ В УСЛОВИЯХ АМУРСКОЙ ОБЛАСТИ

Амурский государственный университет

И. С. Буренкова, Н. Н. Максимова

Аннотация. В работе исследуется применение модели глубокого обучения на основе 
архитектуры YOLOv8n для детекции ростков сои на наземных изображениях, получен-
ных в полевых условиях Амурской области. Особое внимание уделено влиянию мето-
дов аугментации данных на качество оценки густоты посевов, где критически важной 
метрикой является полнота (Recall), поскольку пропущенные растения напрямую иска-
жают агрономическую оценку. Показано, что применение аугментации (включая геоме-
трические и фотометрические преобразования) повышает Recall с 0.78 до 0.85, улучшает 
устойчивость модели к вариациям освещённости и визуального шума, а также снижает 
количество ложноотрицательных предсказаний. Полученные результаты подтверждают 
целесообразность использования аугментированных данных при обучении моделей ком-
пьютерного зрения для задач точного земледелия.
Ключевые слова: густота посевов, соя, компьютерное зрение, YOLOv8, детекция объек-
тов, аугментация данных, Recall, наземная съёмка, машинное обучение.

Введение

Современный агропромышленный комплекс (АПК) всё больше ориентируется на циф-
ровизацию и внедрение интеллектуальных технологий для повышения эффективности сель-
скохозяйственного производства. Одной из ключевых задач в управлении посевами является 
оперативный и точный анализ их качества, в частности — оценка густоты стояния растений, 
поскольку всхожесть растений напрямую показывает урожайность и рентабельность возделы-
вания сельскохозяйственных культур. Традиционные методы оценки, основанные на ручных 
измерениях, трудоёмки, субъективны и не обеспечивают достаточного пространственного ох-
вата. В этой связи методы искусственного интеллекта (ИИ), в сочетании с дистанционными 
данными (дроны, спутники, наземные сенсоры), открывают новые возможности для автома-
тизированного и масштабируемого мониторинга агроэкосистем.

Особый интерес представляет применение ИИ-решений в регионах с интенсивным рас-
тениеводством, но при этом с выраженной пространственной и климатической спецификой. 
Амурская область, являясь одним из ключевых регионов России по производству сои, сталки-
вается с рядом вызовов, связанных с коротким вегетационным периодом, переменчивой по-
годой и необходимостью точного соблюдения агротехнологий. Соевые посевы в этом регионе 
требуют тщательного контроля густоты стояния уже на ранних фазах развития, поскольку 
неравномерность всходов или избыточная загущённость могут существенно снизить продук-
тивность культуры. Использование алгоритмов компьютерного зрения и машинного обуче-
ния позволяет на основе нескольких фото быстро идентифицировать и количественно оцени-
вать число растений на единицу площади.

В последние годы в российской и международной научной литературе появляется всё 
больше исследований, посвящённых применению ИИ для анализа состояния посевов [1–4]. 

Цель данной работы — построение и обучение модели глубокого обучения на основе архи-
тектуры YOLOv8n для детекции ростков сои на наземных изображениях с последующей оцен-
кой влияния методов аугментации данных на ключевые метрики качества, в первую очередь 
на полноту (Recall), определяющую точность оценки густоты посевов.
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1. Сбор, обработка и разметка фотоданных

Для решения задачи количественной оценки густоты стояния сои на основе методов искус-
ственного интеллекта был реализован полный цикл подготовки данных: от полевой съёмки 
до разметки изображений и формирования обучающей выборки. Ниже описаны ключевые 
этапы этого процесса, обеспечивающие достоверность и воспроизводимость результатов.

Фотографирование соевых посевов осуществлялось в фазе трёх настоящих листьев (V3 по 
шкале Fehr и Caviness [5]), что соответствует 14–17 суткам после посева в условиях Амурской 
области. Съёмка проводилась в Бурейском районе Амурской области на полях сельхозпред-
приятия в течение июня–июля 2025 года. Изображения получались вручную агрономом хо-
зяйства с помощью цифровой камеры смартфона. Для минимизации вариативности геоме-
трии съёмки камера удерживалась на постоянной высоте 1,2 м над поверхностью почвы и 
под фиксированным углом примерно 90°. Съёмка проводилась днём в различных погодных 
условиях — как в солнечную, так и в пасмурную погоду, — чтобы повысить устойчивость бу-
дущей модели к естественным колебаниям освещённости. Общий объём первичной фотобазы 
составил около 1500 изображений.

На следующем этапе проводился строгий отбор изображений по следующим критериям: 
достаточная резкость (отсутствие смаза), равномерное освещение без сильных бликов или глу-
боких теней, соответствие фазе развития V3 (визуальная проверка по морфологии ростков). 
Из первоначального набора было исключено 500 снимков, не соответствующих указанным 
требованиям. В результате сформирована репрезентативная выборка из 1000 изображений. 
Для повышения обобщающей способности модели изображения были классифицированы по 
типам визуальных условий: «низкая плотность всходов», «высокая плотность с частичными 
перекрытиями», «наличие сорной растительности», «прочие типы визуального шума, включая 
тени, остатки мульчи, неровности почвы». 

Разметка изображений выполнялась вручную с использованием инструмента Roboflow [6]. 
Каждый росток сои был аннотирован в виде ограничивающего прямоугольника (bounding 
box). В целях обеспечения метрологической достоверности разметки и минимизации влия-
ния субъективных ошибок аннотатора в работе была реализована процедура контроля каче-
ства разметки на репрезентативной подвыборке. Из общей совокупности размеченных изо-
бражений случайным образом было отобрано 10 снимков, охватывающих различные условия 
визуализации: низкую и высокую плотность всходов, наличие сорной растительности и гео-
метрические искажения (тени, неровности рельефа). Эта подвыборка была использована для 
формирования тестового датасета, специально предназначенного для оценки воспроизводи-
мости разметки и стабильности детекции на изображениях с заведомо высокой сложностью 
интерпретации. После чего на выборке проведено обучение пробной модели YOLOv8n [7]. 
Установлено, что качество аннотаций является методологически корректным: предсказанные 
моделью ограничивающие прямоугольники (bounding boxes) в целом соответствовали поло-
жению и количеству размеченных объектов, а расхождения носили преимущественно харак-
тер локальных неточностей, свойственных для начальной стадии обучения. 

С учётом полученных результатов и в целях повышения репрезентативности обучающей 
выборки была реализована расширенная фаза разметки, в ходе которой общее количество 
размеченных изображений было увеличено до 30. Общее количество аннотированных объек-
тов в итоговом датасете превысило 6000, что позволило перейти к полноценной стадии экспе-
риментального обучения с применением комплексных методов аугментации и строгого разде-
ления данных на обучающую, валидационную и тестовую подвыборки.

С учётом ограниченного объёма полевых данных и необходимости повышения робастно-
сти модели к естественным вариациям условий съёмки было принято решение реализовать 
контролируемый эксперимент, направленный на количественную оценку влияния методов 
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аугментации изображений на качество обучения. Для этого на основе единой размеченной 
выборки из 30 изображений были сформированы два независимых датасета: контрольный — 
без применения аугментаций, и экспериментальный — с использованием комплекса преобра-
зований, включавшего как цветовые, так и геометрические и композиционные методы.

Полученный материал представляет собой надёжную основу для последующего этапа – об-
учения и тестирования модели на основе архитектуры YOLOv8.

2. Настройка и обучение нейронной сети

В рамках решаемой задачи для детекции и количественной оценки ростков сои на стати-
ческих изображениях применяется архитектура YOLO (You Only Look Once) — современный 
подход к одноэтапной детекции объектов, отличающийся высокой точностью локализации и 
эффективностью обучения [10].

На начальном этапе экспериментального цикла в качестве базовой архитектуры была вы-
брана модель YOLOv8n (nano) — наименьшая по глубине и числу параметров версия семейства 
YOLOv8 [7]. Как показывают исследования в области машинного обучения, при малом коли-
честве обучающих примеров более сложные модели (например, YOLOv8m, l или x) склонны к 
переобучению, поскольку обладают избыточной выразительной мощностью по сравнению с 
информационной ёмкостью данных. В таких условиях модель запоминает шум и особенности 
отдельных снимков, а не обобщённые паттерны, что приводит к снижению точности на новых 
данных. В то же время компактные архитектуры, такие как nano, содержат значительно мень-
ше параметров (~3,2 млн), что накладывает естественные ограничения на сложность усваи-
ваемых зависимостей и способствует лучшей обобщающей способности в условиях низкой 
репрезентативности выборки. Кроме того, YOLOv8n сохраняет ключевые архитектурные пре-
имущества полноразмерных версий – включая anchor-free детекцию, декаплированную голову 
и поддержку современных аугментаций (в том числе Mosaic), что делает её методологически 
полноценной, несмотря на компактность.

Для объективной оценки влияния аугментации изображений на качество детекции рост-
ков сои были независимо обучены две идентичные модели YOLOv8n — на контрольном да-
тасете (без аугментаций) и на экспериментальном датасете (с применением комплекса ауг-
ментаций). Обучение проводилось в полностью контролируемых условиях: использовались 
одинаковые архитектура модели, гиперпараметры оптимизации и аппаратные ресурсы, что 
исключало влияние внешних факторов на результаты сравнения.

Обучение осуществлялось с помощью официальной библиотеки Ultralytics с фиксирован-
ным набором гиперпараметров (табл. 1).

При оценке качества моделей детекции растений в задачах анализа густоты посевов обыч-
но применяются стандартные метрики компьютерного зрения — Precision (точность), Recall 
(полнота), их гармоническое среднее F1-score, а также IoU (Intersection over Union, измеряет 
перекрытие между предсказанными и истинными bounding boxes, рассчитывается как отно-
шение площади пересечения к площади объединения), mAP (mean Average Precision, средняя 
точность по всем классам объектов, учитывает как точность обнаружения, так и локализацию 
объектов), AP50 (Average Precision при пороге IoU 50 %. Из них наиболее информативной в 
данном контексте является Recall, поскольку она отражает долю реально существующих расте-
ний, успешно обнаруженных моделью. Пропущенные растения (ложноотрицательные случаи, 
FN) напрямую ведут к занижению оценки густоты стояния, что критично для агрономических 
решений. В то же время Precision менее значим: ложные срабатывания (ложноположительные 
случаи, FP) могут быть частично устранены на этапе постобработки (например, с помощью 
фильтрации по размеру, форме или пространственной плотности), тогда как пропущенные 
растения восстановить невозможно.
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Таблица 1
Гиперпараметры обучения моделей YOLOv8n

Гиперпараметр Значение Описание
Архитектура модели YOLOv8n Компактная версия архитектуры YOLOv8
Количество эпох 50 Максимальное число эпох обучения
Ранняя остановка (patience) 10 Прекращение обучения, если метрика 

валидации не улучшается в течение 
10 эпох

Размер изображения (imgsz) 640×640 Входное разрешение изображений
Размер батча (batch size) 16 Количество изображений в одном батче
Начальная скорость обучения (lr₀) 0.01 Базовый learning rate для SGD
Оптимизатор SGD с моментом Стандартный оптимизатор,

рекомендованный авторами YOLOv8
Устройство (device) CPU Обучение выполнено на центральном 

процессоре
Число рабочих потоков 4 Количество параллельных процессов 

загрузки данных

3. Анализ качества обучения

В данном разделе представлено сравнение моделей детекции ростков сои на изображениях 
с использованием YOLOv8n в двух сценариях: без аугментации данных и с применением ауг-
ментации (с использованием встроенных инструментов Roboflow). Главная задача — оценка 
влияния аугментации на качество модели, особенно по метрике Recall, так как пропущенные 
растения критичны для оценки густоты посевов. Каждая модель обучалась на 50 эпохах. Для 
каждого сценария после обучения загружалась лучшая модель и для нее осуществлялась визу-
альная проверка работы.

На рис. 1 представлена динамика изменения метрик обучения на наборе данных без при-
менения аугментации. На всех графиках видна тенденция к улучшению метрик и снижению 
потерь, что свидетельствует о успешном процессе обучения. Потери на обучающей выборке 
демонстрируют устойчивое снижение, что указывает на хорошее качество обучения без пере-
обучения на тренировочных данных. Модель показала высокую точность (Precision) и хоро-
шую полноту (Recall), что делает её пригодной для практического применения в задаче оценки 
густоты посевов, особенно если использовать постобработку для фильтрации ложных сраба-
тываний.

На рис. 2 представлена динамика изменения метрик обучения на наборе данных с приме-
нением аугментации. Обучающие потери (train/box_loss, train/cls_loss, train/dfl_loss) стабильно 
снижаются, что свидетельствует о хорошем обучении. Валидационные потери (val/box_loss, 
val/cls_loss, val/dfl_loss) также демонстрируют тенденцию к снижению, хотя и с некоторыми 
колебаниями (особенно в val/box_loss на 20–30 эпохах). Это нормально для небольших или 
разнородных наборов данных. Небольшие скачки в val/box_loss могут быть связаны с тем, что 
аугментация добавила сложности (например, повороты, изменение яркости), и модель вре-
менно «теряет» точность позиционирования, но затем восстанавливает её. Модель с аугмента-
цией показала высокую точность и хорошую полноту, что делает её пригодной для практиче-
ского применения в задаче оценки густоты посевов.



191

Матрица ошибок (рис. 3) показывает, как модель классифицирует объекты по отношению 
к их истинным меткам. В данном случае у нас два класса: soya (растки сои) и background (фон). 
При сравнении матриц ошибок, видим, что применение аугментации данных улучшило ка-
чество модели для задачи детекции ростков сои. Особенно заметен рост Recall, что критично 
для оценки густоты посевов. Модель стала более устойчивой к вариациям условий съёмки, 
что делает её пригодной для практического использования в полевых условиях. Этот же факт 
подтверждается на рис. 4: обе модели начинают с низкого значения Recall (около 0.1–0.2), затем 
модель с аугментацией в средней части обучения (эпохи 10-30) опережает по качеству модель 
без аугментации и к финальной фаза (эпохи 30–50) модель с аугментацией стабильно превос-
ходит модель без аугментации, на последней эпохе Recall с аугментацией составляет около 
0.85, Recall без аугментации — около 0.78.

Рис. 1. Метрики обучения на наборе данных без применения аугментации

Рис. 2. Метрики обучения на наборе данных с применением аугментации
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а б
Рис. 3. Матрицы ошибок (а — на наборе без аугментации, б — на наборе с аугментацией)

Для демонстрации результатов обучения на рис. 5 представлен результат детекции ростков 
на одном и том же изображении для обеих моделей. Модель без аугментации обнаружила 45 
объектов, модель с аугментацией — 49. Аналогичные результаты получаются и при анализе 
других изображения: модель с аугментацией показывает стабильно лучшие результаты. 

В целом результаты обучения показали, что аугментация данных положительно повлияла 
на качество модели, особенно по ключевой метрике — Recall. Это подтверждает гипотезу, что 
аугментация помогает модели лучше обобщать и работать в реальных условиях. Для практи-
ческого применения в задачах точного земледелия рекомендуется использовать модель, обу-
ченную с применением аугментации, так как она обеспечивает более полную детекцию объек-
тов, что напрямую влияет на точность оценки густоты посевов.

Рис. 4. Динамика изменения метрики Recall на валидационной выборке
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Заключение

В ходе исследования разработана методика автоматизированной оценки густоты сои с ис-
пользованием модели YOLOv8n на основе 30 наземных изображений, содержащих более 6000 
размеченных ростков. Показано, что применение комплексной аугментации данных (геоме-
трической, фотометрической и Mosaic) повышает метрику Recall с 0.78 до 0.85, что критически 
важно для точности оценки густоты, поскольку минимизирует пропуск реальных растений. 
Модель, обученная на аугментированных данных, демонстрирует повышенную устойчивость 
к визуальному шуму и вариациям освещённости, без роста ложных срабатываний. Получен-
ные результаты подтверждают целесообразность использования аугментации при обучении 
моделей компьютерного зрения в условиях ограниченных полевых данных.
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СОЗДАНИЕ ФАРМАЦЕВТА-АССИСТЕНТА НА ОСНОВЕ RAG-СИСТЕМЫ

Воронежский государственный университет

А. П. Буркова

Аннотация. В статье проводится исследование по созданию фармацевта-ассистента. 
В ходе проведенного исследования была разработана RAG-система для автоматизации 
обработки фармацевтических запросов, объединяющая преимущества семантического 
поиска и генеративных языковых моделей. Проведен сравнительный анализ существую-
щих решений, на основе которых был разработана система, которая демонстрирует вы-
сокую эффективность в решении задачи автоматизации консультирования и обладает 
значительным потенциалом для практического применения в здравоохранении.
Ключевые слова: RAG-система, интеллектуальный ассистент, языковые модели, BERT, 
векторизация, гибридный поиск, векторные базы данных, семантический поиск, обра-
ботка естественного языка, медицинские информационные системы.

Введение

В современном информационном мире объем данных с каждым днем становится все боль-
ше, что создает проблему информационного шума и перегрузки [1]. Анализ соцсетей, фору-
мов и блогов показывает, что при выборе препаратов пациенты все чаще обращаются к ин-
тернету. Традиционные методы поиска в интернете или справочниках не всегда эффективны 
из-за того, что большая часть данных о лекарствах не структурирована и разбросана. При 
поиске лекарства важно учитывать множество факторов, о которых обычный человек даже 
не подумает. Таким образом в обществе существует необходимость в решении, которое бы-
стро предоставляет точные, проверенные и персонализированные решения. Такое решение 
могут предоставить большие языковые модели [2]. Они способны генерировать связные тек-
стовые ответы, основанные на паттернах в данных, на которых они обучались. Несмотря на 
способность формулировать ответы на медицинские темы, модель не обладает специализи-
рованными фармацевтическими знаниями и не интегрирована с профессиональными базами 
данных [3]. Это существенно ограничивает её практическую применимость в аптечных сетях.  
Коммерческий продукт Just AI «Бот-Фармацевт» разработан специально для автоматизации 
работы аптек [4]. Его архитектура сочетает технологии обработки естественного языка с жест-
ко структурированными сценариями работы и глубокой интеграцией с профессиональными 
базами данных. Система демонстрирует высокую эффективность при обработке стандартных 
запросов, но сталкивается с трудностями при интерпретации нестандартных формулировок. 
Таким образом целью работы является разработка и проверка архитектуры фармацевта-асси-
стента на основе RAG-системы, обеспечивающей точный семантический поиск и генерацию 
ответов, основанных на фармацевтической базе данных. Задачи исследования:

1. Провести сравнительный анализ существующих решений и выбор RAG-архитектуры.
2. Выбрать и реализовать модель для семантической векторизации текста.
3. Выбрать и настроить векторную базу данных для эффективного хранения и поиска ин-

формации.
4. Реализовать прототип системы и оценить его работоспособность на примере решения 

типовых фармацевтических запросов.
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1. Материалы и методы

1.1. Архитектура системы

В основе разрабатываемой системы лежит архитектура RAG [5], которая сочетает этап из-
влечения релевантной информации из внешнего хранилища знаний с этапом генерации отве-
та языковой моделью. Данный подход позволяет преодолеть ограничения LLM, обеспечивая 
привязку ответов к актуальным и достоверным данным. Работа системы включает следующие 
этапы (рис. 1.):

1. Поиск: Пользовательский запрос векторизуется. По векторному представлению в век-
торной базе данных осуществляется семантический поиск наиболее релевантных фрагментов 
текста из базы знаний.

2. Генерация: Найденные фрагменты текста и исходный запрос пользователя объединяются 
в специальный промпт, который передается языковой модели. LLM формирует итоговый, связ-
ный и контекстуализированный ответ, строго основываясь на предоставленной информации.

1.2. Данные

В качестве источника знаний использовалась база данных лекарственных средств «ВИ-
ДАЛЬ». Данные были представлены в виде структурированной таблицы (табл. 1).

Таблица 1
Список полей в таблице

Name Type Size Description
1 2 3 4

DocumentID Длинное целое 4 ID документа
RusName Короткий текст 255 Наименование RUS
CompiledComposition Длинный текст – Описание состава и формы выпуска
PhInfluence Длинный текст – Описание фармакологического действия
Dosage Длинный текст – Режим дозирования
OverDosage Длинный текст – Передозировка
Interaction Длинный текст – Лекарственное взаимодействие
Lactation Длинный текст – Применение при беременности и кормлении 

грудью
SideEffects Длинный текст – Побочное действие

Рис. 1. Архитектура RAG
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Продолжение таблицы 3
1 2 3 4

StorageCondition Длинный текст – Условия и сроки хранения
Indication Длинный текст – Показания к применению
ContraIndication Длинный текст – Противопоказания к применению
SpecialInstruction Длинный текст – Особые указания
YearEdition Короткий тест 50 Год издания
PregnancyUsing Короткий текст 50 Противопоказания при беременности
NursingUsing Короткий текст 50 Противопоказания при уходе
RenalInsuf Длинный текст – Применение при нарушениях функции почек
HepatoInsuf Длинный текст – Применение при нарушениях функции печени
PharmDelivery Длинный текст – Условия отпуска из аптек
ElderlyInsuf Длинный текст – Применение у пожилых пациентов
ChildInsuf Длинный текст – Применение у детей

Перед загрузкой в систему данные прошли этап предобработки для последующей вектори-
зации.

1.3. Методы векторизации и поиска

Критически важным этапом разработки являлся выбор модели эмбеддингов, обеспечива-
ющей семантический поиск в медицинских текстах. Модель должна хорошо работать с рус-
ским языком, медицинскими терминами и опечатками. Был проведен сравнительный анализ 
нескольких моделей. Русскоязычная модель sentence-t5-xxl на базе BERT демонстрирует хо-
рошую результативность на различных NLP-задачах и пригодная для дообучения. Большая 
русскоязычная модель ai-forever/sbert_large_nlu_ru, изначально ориентированная на задачи 
семантического сравнения текстов, но модель не обладает возможностью для использования в 
производственной среде без специализированного GPU-оборудования. Но ни одна из рассмо-
тренных моделей не обладает встроенной устойчивостью к опечаткам, что указывает на необ-
ходимость этапа предварительной нормализации текста. По итогам анализа для реализации 
была выбрана модель ai-forever/sbert_large_nlu_ru как оптимальный компромисс между каче-
ством семантических представлений, поддержкой русского языка и требованиями к вычис-
лительным ресурсам. Для доступа к модели использовалась библиотека sentence-transformers.

1.4. Векторная база данных

Для хранения векторных представлений документов и эффективного семантического по-
иска была выбрана векторная база данных Weaviate, которая поддерживает гибридный поиск. 
Был развернут облачный кластер Weaviate, в котором была создана коллекция MedicalDocument 
с предварительно настроенной схемой, соответствующей структуре исходных данных. 

1.5. Языковые модели для генерации

Критически важным решением при построении RAG-системы является выбор языковой 
модели, ответственной за генерацию финального ответа на основе извлеченного контекста. Мо-
дель должна не только генерировать связный и грамматически правильный текст на русском 
языке, но и строго следовать предоставленному контексту, минимизировать галлюцинации.
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Был проведен сравнительный анализ нескольких популярных открытых моделей, подходя-
щих для задач генерации на русском языке. Необходимо было, чтобы модель могла работать с 
русским языком и не была требовательна к ресурсам. Рассматривались модели с открытым ко-
дом LLAMA, QWEN и DeepSeek, так как эти модели лежат в открытом доступе. LLAMA плохо 
работает с длинным контекстом из-за квадратичной сложности её механизма внимания, что 
приводит к экспоненциальному росту вычислительной нагрузки и требует больших вычисли-
тельных мощностей. Из-за того, что архитектура DeepSeek построена на методе MoE, то есть 
использует сеть из небольших экспертов, склонна к генерации правдоподобных, но не факти-
чески верных ответов, что делает модель менее предсказуемой в задачах, требующих строгого 
следования предоставленному контексту. Поэтому была выбрана QWEN2.5. с 70 миллионами 
параметров, так как поведение этой модели легче всего контролировать.

Модель была развернута локально с использованием фреймворка vLLM. Для интеграции 
модели в RAG-конвейер был разработан специализированный шаблон промпта, направлен-
ный на минимизацию галлюцинаций и обеспечение строгого следования контексту:

Ты — ассистент-фармацевт. Ответь на вопрос пользователя, используя ТОЛЬКО информа-
цию из предоставленного контекста.

КОНТЕКСТ:
{context}
ИНСТРУКЦИИ:
1. Если ответа на вопрос нет в контексте, сообщи: «В предоставленной информации нет 

ответа на ваш вопрос».
2. Не добавляй информацию, которой нет в контексте.
3. Сохраняй точные формулировки из контекста для дозировок и медицинских терминов.
4. Структурируй ответ для удобства чтения.
5. Добавь предупреждение о необходимости консультации с врачом.

ВОПРОС: {question}

ОТВЕТ:

2. Методика проведения эксперимента

Целью данного исследования стало изучение влияния дообучения языковой модели на 
медицинских данных на качество ответов. Была проведена проверка работы модели перед и 
после дообучения. В качестве исходных данных использовался набор предварительно подго-
товленных тестовых запросов, охватывающих широкий круг сценариев, и название и качества 
лекарств, которые помогут при данной проблеме:

• Вопросы о симптомах, методах лечения, лекарственных препаратах
• Вопросы, требующие особой осторожности в формулировках, чтобы избежать некор-

ректных рекомендаций, связанных с самолечением.
• Вопросы, ответы на которые однозначно содержатся в базе знаний для проверки способ-

ности модели извлекать и использовать новый контекст.
Такие данные позволяют проверить, насколько хорошо модель запоминает и воспроизво-

дит факты из предоставленного ей контекста, а также оценить способность давать разверну-
тые, точные и безопасные ответы.

Эксперимент проводился с использованием двух подходов. Первый — классическое ис-
пользование LLM без дообучения: на вопросы пользователя модель отвечала, опираясь ис-
ключительно на знания, полученные при обучении на открытых данных. Второй подход 
предусматривал дообучение модели с использованием RAG, где при обработке каждого поль-
зовательского запроса система в реальном времени осуществляла семантический поиск и из-
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влекала наиболее релевантные фрагменты текста из описания лекарства из целевой базы ме-
дицинских знаний. Затем эти фрагменты подавались в модель в качестве контекста, на основе 
которого она формировала итоговый ответ.

При сравнении работы необходимы метрики, которые показывали, насколько полученные 
ответы верны. Использовались специальные метрики для проверки работы LLM METEOR 
и BERTScore для статистических оценок. METEOR учитывала не только точные совпадения 
ответов, но и синонимы, стемминг и парафразы, обеспечивая гибкую оценку. BERTScore из-
мерял семантическое сходство на основе контекстуальных эмбеддингов, что позволяло оце-
нивать смысловую близость ответов даже при различных формулировках. Статистические ме-
тоды оценки надежны, но недостаточно точны, так как не учитывают семантику в полной мере 
и могут недооценивать семантически правильные, но лексически отличные ответы. Поэтому 
для оценки работы LLM, помимо статистических метрик, для оценки также использовался 
LLM-as-judge score — методология, при которой более мощная языковая модель выступает в 
роли эксперта-оценщика, использовалась QAG Score, который автоматически генерирует кон-
трольные вопросы из медицинского контекста и оценивает способность модели точно отве-
чать на них, что особенно ценно для проверки фактической точности в медицинской области.

3. Результаты эксперимента и анализ

Проведенное сравнение двух подходов продемонстрировало статистически значимое улуч-
шение качества ответов модели при использовании метода RAG(табл. 2, 3). Результаты оценки 
ответов модели на тестовом наборе запросов показали преимущество подхода с RAG.

Таблица 2 
Примеры ответов

Вопрос Ответ QWEN Ответ RAG Ответ тестового 
набора

Что делать 
при передо-
зировке пара-
цетамолом?

При передозировке параце-
тамолом нужно немедленно 
обратиться к врачу. Могут 
быть тошнота, рвота, боль 
в животе. В больнице могут 
назначить антидот.

При передозировке парацета-
молом нужно немедленно об-
ратиться к врачу. Могут быть 
тошнота, рвота, боль в животе. 
В больнице могут назначить ан-
тидот.

Необходимо обраще-
ние к специалисту. 
Будет назначено ле-
чение: принятие ан-
тидота и промывание 
желудка.

Можно ли 
принимать 
амоксицил-
лин с алкого-
лем?

Сочетание антибиотиков с 
алкоголем обычно не реко-
мендуется.

Согласно инструкции, прием 
амоксициллина с алкоголем не 
рекомендуется. Этанол может 
снижать абсорбцию препарата и 
повышать риск побочных эффек-
тов со стороны ЖКТ (тошнота, 
рвота, диарея).

При принятии амок-
сициллин с алкоголем 
возможна диарея или 
рвота.

У ребенка 
кашель 
и высокая 
температура.

Принимайте 10–15 мг./кг 
парацетамола каждые 5 ча-
сов или 5–10 мг./кг Ибупро-
фена каждые 6 часов.

При повышенной температура 
принимайте Парацетамол 10–15 
мг/кг на прием, каждые 4–6 ча-
сов или ибупрофен — 5–10 мг/
кг на прием, каждые 6–8 часов. 
Важно не применять аспирин 
детям до 12 лет. При темпера-
туре выше 39°C или сохране-
нии симптомов более 3 дней — 
срочно обратитесь к врачу.

Необходимо принять 
парацетамол — 10–15 
мг./кг. каждые 4–6 ча-
сов или ибупрофен — 
5-10 мг./кг. Каждые 6–8 
часов.



200

Таблица 3
Сравнение работы

Метрика LLM RAG
METEOR 0, 646 0,79
BERTScore 0,491 0, 821
QAG Score 0, 721 0,837

В базовом сценарии модель продемонстрировала низкую точность. Ошибки в основном 
были связаны с устаревшей информацией, обобщениями или полным отсутствием знаний по 
узкоспециальным медицинским темам. С использованием RAG показатель точности вырос. 
Модель стабильно предоставляла фактологически верные ответы на вопросы, ответы на ко-
торые содержались в предоставленной базе знаний. Рост точности не сопровождался сниже-
нием полноты ответов, ответы с RAG были более детализированными и содержали ссылки на 
конкретные данные из контекста.

На запросы о новом методе лечения, LLM давала общий ответ, либо признавала отсутствие 
информации. Модель с RAG, обратившись к базе знаний, точно называла метод, его принцип 
действия и показания к применению. При вопросе, содержащем потенциально опасное пред-
положение, базовая модель иногда генерировала нейтральный или обтекаемый ответ. Модель 
с RAG, благодаря доступу к руководствам и инструкциям, давала четкие и безопасные ответы, 
подчеркивая необходимость консультации с врачом.

Таким образом, экспериментальные данные однозначно свидетельствуют о высокой эф-
фективности дообучения с использованием RAG для задач, требующих работы со специали-
зированной и актуальной информацией. 

Заключение

В ходе проведенного исследования была разработана RAG-система для автоматизации 
обработки фармацевтических запросов, объединяющая преимущества семантического по-
иска и генеративных языковых моделей. Анализ существующих решений показал, что уни-
версальные языковые модели не обеспечивают достаточной точности в медицинской сфере 
из-за отсутствия специализированных знаний, а жестко структурированные коммерческие 
системы ограничены в обработке нестандартных запросов. Применение RAG-архитектуры 
позволило создать гибкую систему, которая динамически извлекает актуальные данные из ме-
дицинских источников и формирует ответы на их основе. Это обеспечивает высокую досто-
верность информации при сохранении естественности генеративных моделей. Выбор модели 
векторизации ai-forever/sbert_large_nlu_ru и её дообучение на медицинских данных повысили 
точность семантического поиска, включая обработку сложных терминов и опечаток. Исполь-
зование Weaviate в качестве векторной базы данных доказало свою эффективность благода-
ря поддержке сложных запросов, гибридного поиска и масштабируемости, что критически 
важно для работы с большими объемами фармацевтической информации. Языковая модель 
QWEN продемонстрировала высокий уровень эффективности на сложной логике и незнако-
мых данных. Практическая значимость системы заключается в возможности её внедрения в 
аптечных сетях и медицинских учреждениях для ускорения обработки запросов, снижения 
рисков ошибок и повышения качества консультаций. Таким образом, разработанная система 
демонстрирует высокую эффективность в решении задачи автоматизации фармацевтическо-
го консультирования и обладает значительным потенциалом для практического применения 
в здравоохранении.
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Аннотация. Предлагается рассмотреть и сравнить работу некоторых типов нейронных 
сетей и рандомизированных систем итерированных функций. Отмечается, что некоторое 
сходство в выполнении этих процедур позволяет говорить о близости полученных ре-
зультатов. Анализ выполнения систем итерированных функций способствует установле-
нию связи между различными типами нейронных сетей: рекуррентными и сверточными. 
Сравнение также предполагает характеризовать классы задач, наиболее подходящих для 
тех или иных процедур.
Ключевые слова: нейронные сети, рандомизированные системы итерированных функ-
ций, рекуррентные и сверточные сети, машинное обучение.

Введение

Обработка больших массивов данных предполагает наличие соответствующего программ-
ного обеспечения. Развитие такого направления как нейронные сети, являющегося частью 
более известного под термином искусственного интеллекта (ИИ), как нельзя лучше отвечает 
современным потребностям. Решение таких задач как классификация, поиск скрытых законо-
мерностей, анализ пространственных структур и пр. напрямую связано с решением проблем 
создания соответствующих нейронных сетей. Алгоритмы нейронных сетей существенно ис-
пользуют возможности современных компьютерных технологий и демонстрируют заметные 
успехи в этом направлении.

Наряду с этим в теории фрактальных множеств развиваются подходы, связанные с исполь-
зованием алгоритмов построения различного рода множеств, которые обладают свойствами, 
полезными с точки зрения анализа структур данных. При этом алгоритмы построения таких 
множеств имеют прозрачную интерпретацию, что позволяет в свою очередь использовать их 
для получения хорошо интерпретируемых выводов. Сравнивая процессы выполнения этих 
алгоритмов можно отметить большое сходство процедур, реализующих некоторые классы 
нейронных сетей. В связи с этим возникает задача сравнительного анализа этих подходов. И 
хотя рандомизированные системы итерировнных функций (Random Iterated Function System - 
RIFS) не являются нейронными сетями в полном классическом понимании, они могут выпол-
нять схожие задачи: аппроксимацию данных, генерацию сложных структур, моделирование 
хаотических процессов, проведение кластеризации. 

1. Рекуррентные нейронные сети и рандомизированные системы итерированных функций

Как известно, рекуррентные нейронные сети (RNN) представляют класс нейронных сетей, 
предназначенных для обработки данных, имеющих структуру последовательностей таких как: 
временные ряды, генерация текста и т.п. Основная особенность RNN — наличие обратной связи 
[6, 8], что позволяет им сохранять информацию о предыдущих шагах последовательности, то 
есть обладание «памятью». Такими же свойствами обладает и схема RIFS в процедуре F1 [1]. 

Выполнение процедуры F1 сводится к рекурентным/повторяющимся действиям. Система 
итерированных функций в случае процедуры F1 задаётся уравнениями ( 1)

1 (1 ) ,n
n n jX X Zξ ξ −

−= + −  
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( 1, 2, ),n N=   где ( 1) { | : 1, , },n
j j jZ Z Z p j K− ∈ = =   { },j jp p Z Z= =  0,jp >  1,j jp =∑  ,m

nX R∈  
0 1ξ< <  — параметр системы. Такой вариант реализации RIFS в литературе обозначен F1 [1, 3]. 
Отметим, что параметр, представленный как 1 ,

1
ξ

µ
=

+
 где 0,µ >  можно интерпретировать 

как сигмоидную функцию ( ),σ τ  где .e τµ −=  В этом случае можно считать, что на вход проце-
дуры, как и нейронной сети подаётся значение 1,nX −  обработанное сигмоидной функцией ак-
тивации .ξ  Значение ( 1)n

jZ −  в рамках этой процедуры можно рассматривать как смещение.
Такой подход позволяет интерпретировать рандомизированные системы итерированных 

функций с постоянными значениями гиперпараметров 1 2, , { , , ..., },KK p p pξ =P  1 2{ , , ..., }KZ Z Z=Z  
как модели рекуррентных нейронных сетей.

Входное распределение 1 2{ , , ..., }KZ Z Z=Z  задаётся набором вероятностей 1 2{ , , ..., },Kp p pP  
которое определяет инвариантную меру аттрактора [9]. В этом случае F1 выглядит как очень 
глубокая рекуррентная сеть с конечным множеством значений предфрактала и значением па-
раметра .ξ  В таком представлении алгоритм F1 проявляет схожесть с RNN, которые по опре-
делению являются очень глубокими [7]. В этом случае последовательность { : 1, ..., },iX i N= =X  
которая генерируется при выполнении, представляет собой скрытые состояния сети, и одно-
временно входы, которые характеризуются как внутренние состояния.

Алгоритм F1 предполагает, что значение параметра ξ  задано. В случае если значение пара-
метра нужно получить в процессе обучения RIFS, эта величина может оцениваться по имею-
щейся выборке, но в отличие от обратного распространения ошибки в RNN в качестве оценки 
выступает выборочное значение автокорреляционной функции [2]. Мы можем рассматривать, 
по сути, эту процедуру как вариант сети с прямой связью (т.н. полносвязная сеть), в которой 
связь устанавливается только с одним, случайно выбранным элементом следующего скрытого 
слоя. Фактически можно сказать, что на каждом шаге имеется внутренний слой скрытого со-
стояния, состоящий из элементов 1 2{ , , ..., },KZ Z Z=Z  но управление передается только одно-
му каналу, случайно выбранному в соответствии с распределением 1 2{ , , ..., }.Kp p p=P  Это 
можно рассматривать как своего рода случайный выбор активации (аналогия с dropout) [6, 7].

Очевидно, аналогия в описании RNN и RIFS заключается также и в том, что обе системы 
работают итеративно, сохраняя получившееся состояние. Это свойство RNN было исполь-
зовано при генерировании, например, траекторий броуновского движения, фрактальных 
кривых. Как и в случае RIFS, данное свойство позволяет интерпретировать каждое состояние 
нейронной сети как точку в пространстве состояний, а переходы — как случайно выбранные 
отображения. Всё это в полной мере соответствует интерпретации RIFS.

Некоторые исследования показывают, что глубокие нейронные сети можно интерпре-
тировать как динамические системы или функциональные композиции, аналогичные RIFS. 
В публикациях неоднократно отмечалось, что глубокие нейронные сети, наверное, хуже всего 
поддаются интерпретации [5]. Возможно, это связано с тем, что траектория RIFS, как было по-
казано [1], представляет фрактальное множество, описание которого требует специфического 
подхода. 

Как было отмечено выше, RNN используются для анализа и моделирования множеств, 
представленных последовательностями значений. Процедура F1 была использована нами для 
прогнозирования урожайности зерновых культур — озимой пшеницы и ячменя [2].

2. Сверточные нейронные сети и рандомизированные системы итерированных функций

Результаты процедуры F1 представляют орграф, или линейную цепочку. В литературе [4] 
эту конструкцию иногда называют нейронной сетью прямого распространения или много-
слойным перцептроном. Выполняя эквивалентные преобразования [3] можно перейти к про-
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цедуре F2, которая при тех же значениях параметров, что и для F1, позволяет получить топо-
логически эквивалентную структуру [1, 3]. При этом случайный характер построения 
фрактального множества переносится на построение матрицы ,A  строки которой представ-
ляют кортежи 1 2 ˆ( , , ..., , ..., ).i m KA a a a a=  Строки получаются суммированием членов ряда 

1n
n

aµ =∑  по случайно выбранным K  ячейкам согласно распределению .P  При таком постро-
ении матрицы A  в каждой строке имеется доминирующий элемент ˆ ,ma  величина которого 
превышает сумму всех остальных элементов кортежа. Положение этого элемента в строке 
определяет отнесение кортежа iA  к классу ,kS  ( 1, 2, , ).k K=   Сам аттрактор процедуры пред-
ставляется как произведение ,=X AZ  где Z  представлена как матрица координат точек про-
тофрактала. При этом аттрактор процедуры представляется как объединение непересекаю-
щихся кластеров 

1

.
K

k
k

S
=

=X


Изменяя положение доминирующего элемента, что возможно сделать с помощью соответ-
ствующего линейного преобразования, можно перенести кортеж iA  из класса kS  в любой дру-
гой класс .lS  Аналогично можно поступить и с любым другим элементом класса .kS  Другими 
словами, все элементы любого класса аттрактора можно отобразить биективно в заранее за-
данный класс. Это свойство является проявлением самоподобия аттрактора.

Процедуру F2 можно рассматривать как свёрточную нейронную сеть (CNN). В литературе 
отмечается, что такого рода сети лучше соответствуют задачам построения изображений и 
задачам кластеризации. При этом они, как и F2, должны иметь некоторую априорную инфор-
мацию о пространственном изображении. Как было показано [1], это процедура обладает ин-
вариантностью (безразличием) относительно следования элементов .iX  В целом можно пока-
зать, что процедура F2 представляет некий марковский процесс, т.е. представляет марковскую 
сеть. При определенных условиях результаты выполнения процедур F1 и F2 (с учётом случай-
ного характера выполнения этих процедур) топологически эквивалентны. Для различения ал-
горитмов, порождающих данное топологическое пространство, предлагается использовать 
преобразование Лежандра. Процедура F2 была использована нами для построения райониро-
ванной выборки и отбора типичных объектов [2].

Заключение

В работе мы стремились показать, что нейронные сети как RNN, так и CNN, особенно глу-
бокие, можно рассматривать (в некотором приближении) как стохастические системы итери-
рованных функций RIFS, где каждый слой — это случайное преобразование, а результатом 
выполнения является фрактальный аттрактор. Оценивание параметров при выполнении RIFS 
заменяет процесс настройки модели, который в целом составляет содержание машинного об-
учения. При таком подходе мы практически исключаем проблему переобучения [9, 10]. Фак-
тически, мы задаем гиперпараметры, т. е. параметры априорного распределения и значения 
некоторых величин, участвующих в построении аттрактора. 

Проведенное сравнение позволяет показать, что нейронные сети, особенно глубокие и ре-
куррентные, можно интерпретировать как рандомизиованные системы итерированных функ-
ций, где каждый слой — это случайное преобразование, сходящееся к определённому аттрак-
тору, который характеризуется распределением данных.

В рамках проведенной аналогии внутренние состояния нейронных сетей как RNN, так и 
CNN могут быть представлены фрактальными множествами. Формируя эти состояния, появ-
ляется возможность дать оценку и анализировать динамику моделируемого объекта: F1 – для 
рекуррентной сети, F2 — свёрточной.
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АНАЛИЗ КОНФИГУРАЦИЙ ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ 
ПОИСКА ИНФОРМАЦИИ В НАУЧНЫХ ДОКУМЕНТАХ

Ярославский государственный технический университет

И. С. Высотин, О. Ю. Марьясин

Аннотация. В работе представлены результаты экспериментального тестирования раз-
личных конфигураций Retrieval-Augmented Generation (RAG) системы с варьированием 
ее ключевых параметров — размера чанка, типа векторных баз, моделей эмбеддингов и 
способа поиска релевантной информации. Анализ результатов экспериментов позволяет 
сделать вывод, что качество ответов RAG-системы существенно зависит от размера чанка 
и выбора модели эмбеддингов. Наилучшие результаты были получены при использова-
нии размера чанка 500 символов и моделей эмбеддингов BAAI/bge-m3, intfloat/e5-large-v2 
и nomic-embed-text. Варианты конфигурации RAG-системы с использованием данных 
параметров показали лучшие значения метрик, что свидетельствует о высокой степени 
смыслового совпадения между ответом модели и эталонным текстом.
Ключевые слова: поиск информации, retrieval-augmented generation, векторные базы, мо-
дели эмбеддингов, retriever, большие языковые модели, reranker, cross-encoder.

Введение

Современное развитие искусственного интеллекта характеризуется переходом от уз-
коспециализированных алгоритмов к универсальным моделям, способным решать широкий 
спектр задач обработки естественного языка. Наибольший прогресс наблюдается в области 
больших языковых моделей (Large Language Model — LLM), которые демонстрируют способ-
ность к рассуждению, обобщению знаний и формированию связных ответов на естественном 
языке. Однако ключевым ограничением подобных систем остаётся невозможность доступа к 
той информации, которая неизвестна модели, т.е. модель владеет только теми данными, ко-
торые были доступны на момент обучения, что приводит к устареванию знаний и снижению 
достоверности выводов [1].

Для преодоления данного ограничения активно развиваются гибридные подходы, объе-
диняющие генеративные возможности LLM с методами информационного поиска. Одним из 
наиболее значимых направлений в этой области стала технология RAG, предложенная в 2020 
году Патриком Льюисом [2]. Суть RAG заключается в интеграции внешнего модуля поиска, 
извлекающего релевантную информацию из постоянно обновляемых источников, с LLM, ко-
торая использует эти данные для построения осмысленных ответов. Главное преимущество 
RAG-систем по сравнению с одиночными LLM заключается в том, что они позволяют объеди-
нить интеллектуальные возможности LLM с постоянно обновляемой внешней базой знаний 
[3]. Это обеспечивает более точные, актуальные и обоснованные ответы, особенно при работе с 
корпоративной документацией, внутренними базами знаний или техническими регламентами.

Концептуально RAG опирается на идею разделения вычислительной и смысловой нагруз-
ки между двумя модулями — системой семантического поиска (retriever) и LLM [2]. Её основ-
ная идея состоит в том, что LLM получает доступ к внешнему хранилищу знаний и использует 
найденные данные для генерации ответов, что повышает их достоверность и снижает вероят-
ность появления «галлюцинаций» — некорректных или вымышленных фактов [4].

Архитектура RAG включает три ключевых компонента: источник данных, векторную базу 
и LLM. На подготовительном этапе исходные тексты (документы, статьи, регламенты и т. п.) 
проходят предобработку и разбиение на чанки (chunks), которые затем преобразуются в век-



207

торные представления с помощью моделей эмбеддингов (embedding models) [1]. Этот процесс, 
называемый векторизацией, обеспечивает возможность смыслового сопоставления текстов. 
Полученные векторы сохраняются во векторной базе данных. После поступления запроса он 
также преобразуется в вектор, и выполняется поиск наиболее релевантных фрагментов тек-
ста. Найденные фрагменты передаются в LLM, которая формирует итоговый ответ, опираясь 
на собственные знания и на данные из векторного хранилища. В отличие от LLM, где знания 
фиксированы в весах, в RAG актуальные сведения могут обновляться без переобучения — до-
статочно обновить содержимое векторного хранилища. Это делает технологию особенно эф-
фективной для корпоративных систем с постоянно пополняемыми базами знаний и для задач, 
требующих обращения к специализированным документам.

Актуальность исследований в области RAG обусловлена необходимостью повышения до-
стоверности, воспроизводимости и интерпретируемости ответов, формируемых LLM. При-
менение подобных систем становится особенно важным при решении задач корпоративного 
поиска, анализа научно-технической документации и построения интеллектуальных справоч-
ных систем.

1. Обзор литературных источников

Далее представлен краткий обзор литературных источников, в которых описаны исследо-
вания, подобные тем, что были выполнены в данной работе. 

Базовая работа [2] посвящена всестороннему исследованию и анализу технологии RAG, 
при этом особое внимание уделено её применению в области обработки естественного языка 
(Natural Language Processing — NLP). Авторы рассматривают особенности интеграции меха-
низмов поиска и генерации в контексте задач, требующих глубокого понимания текста и рабо-
ты с большими объемами знаний. В рамках исследования описываются методы оценки каче-
ства генерации ответов и релевантности извлечённой информации, что позволило заложить 
основы последующих разработок в области RAG-систем для задач NLP.

В работе [5] авторы стремились определить оптимальные практики реализации RAG для 
повышения качества и надежности контента, создаваемого LLM. Авторы провели обширные 
эксперименты, в ходе которых изменялись: размер чанка (128, 512, 1024, 2048), модели эм-
беддингов (14 моделей, включая intfloat/e5-large-v2 и sentence-transformers/all-mpnet-base-v2), 
векторные базы (Weaviate, Faiss, Chroma, Qdrant, Milvus), методы поиска релевантной инфор-
мации (retrieval search) и другое. Основываясь на результатах проведенных экспериментов, 
авторы предложили несколько стратегий развертывания RAG, которые обеспечивают баланс 
между производительностью и эффективностью.

В [6] описываются различные подходы к сегментации текстов, направленные на опти-
мизацию баланса между полнотой и точностью представления контекста. В исследовании 
рассматривались такие методы как Fixed-size Chunker, Breakpoint-based Semantic Chunker и 
Clustering-based Semantic Chunker. Метод Fixed-size Chunker, основан на разбиении текста на 
фрагменты фиксированной длины (например, по числу токенов или символов). Данный под-
ход отличается простотой реализации и предсказуемым размером контекста. Результаты ис-
следования показали, что метод Fixed-size Chunker остается более эффективным и надежным 
выбором для практических приложений RAG.

В [7] подробно описывается широко распространённый фреймворк LangChain. Этот фрей-
мворк представляет собой модульную библиотеку на языке Python для построения и интегра-
ции приложений на основе LLM. Он обеспечивает инфраструктуру для объединения различ-
ных компонентов RAG-системы в единую цепочку — от загрузки документов и разбиения их 
на чанки до генерации ответов с использованием внешних данных. Его архитектура построена 
по принципу «цепочек» (chains), где каждая операция — загрузка, разбиение, векторизация, 
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поиск или генерация оформлена как отдельный модуль, что обеспечивает гибкость и возмож-
ность экспериментального сравнения различных конфигураций. LangChain поддерживает 
множество векторных хранилищ, моделей эмбеддингов и LLM.

2. Описание экспериментов

Целью экспериментальной части являлась оценка влияния ключевых конфигурационных 
параметров RAG на качество извлечения информации и точность формируемых ответов. 
В качестве исходного корпуса документов использовалась большая коллекция научно-техни-
ческих статей из журналов издательств Elsevier, MDPI и сборников трудов международных 
конференций, на английском языке, в формате pdf, посвящённых моделированию и оптимиза-
ции мультиэнергетических систем (multi-energy systems), а также связанным с этим, вопросам. 
В статьях анализировались концепции интеграции различных энергетических сетей, концеп-
ции SmarGrid и microGrid, роль возобновляемых и комбинированных источников энергии, 
сетевых накопителей в сетях SmarGrid и microGrid, методы оптимизации энергоснабжения и 
энергопотребления в энергетических системах.

Для загрузки информации из документов в формате PDF применялся загрузчик 
PyPDFLoader, входящий в библиотеку LangChain. После загрузки содержимое докумен-
тов подвергалось разбиению на смысловые фрагменты (чанки) с использованием класса 
RecursiveCharacterTextSplitter библиотеки LangChain. Алгоритм RecursiveCharacterTextSplitter 
использует рекурсивный подход и список разделителей (перевод строки, пробел, пустая стро-
ка), чтобы адаптироваться к естественной иерархической структуре текста (абзацы, предло-
жения, слова). 

При проведении экспериментов, размеры чанков устанавливались в 500, 1000 и 1500 сим-
волов, перекрытие между соседними чанками отсутствовало — каждый новый фрагмент на-
чинался сразу после окончания предыдущего. Как было показано в работе [5], размер чанков 
в 500 и менее символов, не дает повышения эффективности результатов. Поэтому размер чан-
ков менее 500 символов в экспериментах не использовался.

В качестве моделей эмбеддингов применялись решения, вошедшие в рейтинг Massive 
Text Embedding Benchmark (MTEB) [8], включающий более 300 моделей для более 1000 язы-
ков. В исследовании было протестировано 7 разных моделей от лёгких и производительных 
MiniLM до крупных и высокоточных E5 и BGE: sentence-transformers/all-MiniLM-L6-v2 (117), 
sentence-transformers/all-mpnet-base-v2 (102), thenlper/gte-large (66), nomic-embed-text (57), 
intfloat/e5-large-v2 (53), BAAI/bge-m3 (22) и intfloat/multilingual-e5-large-instruct (7). В скобках 
приведены значения в рейтинге MTEB на момент проведения экспериментов. Данные модели 
различаются по различным показателям, включая размерность эмбеддингов, максимальное 
количество токенов, объём памяти и количество параметров, а также по среднему результату 
на различных типах задач (извлечение, ранжирование, кластеризация, классификация и т. д.), 
согласно сводной статистике рейтинга MTEB. Это позволяет экспериментально исследовать, 
как размерность эмбеддингов, максимальное количество токенов и другие параметры влияют 
на качество поиска и итоговой генерации.

Для хранения и обработки векторных представлений документов применялись векторные 
базы Chroma, Qdrant и SKLearn. Такой выбор векторных баз был сделан из следующих сообра-
жений: высокой популярности некоторых из них (Chroma, Qdrant), мультиплатформенности 
и желания использовать их локальные, а не облачные варианты. Локальные векторные храни-
лища обеспечивают безопасное и приватное хранение данных. По этим причинам из исследо-
вания были исключены некоторые другие популярные векторные базы, такие как Weaviate или 
Milvus.
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В ходе проведения экспериментов использовались различные подходы к поиску релевант-
ной информации в векторных базах данных, составляющих retrieval-компонент RAG-системы. 
Первый подход основан на прямом поиске по сходству (similarity search), реализующем вы-
числение косинусного расстояния между вектором запроса и векторами текстов документов 
в коллекции. В результате возвращаются фрагменты, наиболее близкие по семантическому со-
держанию к исходному запросу. Этот метод отличается простотой реализации и высокой ско-
ростью работы, однако не всегда обеспечивает разнообразие контекста, поскольку найденные 
документы могут содержать дублированную или частично пересекающуюся информацию.

Второй подход — поиск с использованием retriever. Он представляет собой более продви-
нутую схему, предоставляемую библиотекой LangChain. В данном случае применялся алго-
ритм MMR (Maximal Marginal Relevance), минимизирующий избыточность выдачи и обеспе-
чивающий более широкий охват смысловых аспектов запроса. Он позволяет формировать 
контекст, который лучше отражает смысловое разнообразие информационной базы и повы-
шает информативность итогового ответа.

Третий вариант, реализованный в рамках экспериментов, представляет собой комбиниро-
ванный метод, включающий similarity search вместе с LLM. Он соответствует полной архитек-
туре RAG. На первом этапе выполняется поиск релевантных документов. Найденные фраг-
менты затем объединяются с исходным запросом пользователя посредством промпт-шаблона 
rlm/rag-prompt из LangChain Hub. Полученный расширенный контекст передаётся в LLM, ко-
торая формирует итоговый ответ, опираясь на реальные данные из векторного хранилища. В 
качестве LLM применялась популярная, компактная модель llama3.2 3B, запускаемая локально 
с помощью фреймворка Ollama.

Таким образом, в рамках проводимых экспериментов изменялись следующие основные па-
раметры конфигурации RAG-системы: размер чанка, тип векторных баз, моделей эмбеддингов 
и способ поиска релевантной информации.

3. Анализ результатов

В результате выполнения серий запусков были собраны многочисленные результаты, 
включающие параметры RAG-системы и полученные ответы. Каждая запись включала сведе-
ния о типе векторной базы, размере чанка, используемой модели эмбеддингов, методе поиска 
и текстовом ответе, что позволило провести последующий анализ зависимости качества отве-
тов от различных факторов.

Оценка правильности и релевантности ответов, формируемых RAG-системой, проводи-
лась с использованием трёх независимых подходов, основанных на современных моделях ран-
жирования текстовых пар и метриках сходства. Данные действия проводились для получения 
количественных показателей соответствия сгенерированных ответов эталонным определени-
ям, отражающим корректное описание исследуемого понятия.

Первый метод оценки основан на применении модели кросс-энкодера (cross-encoder/ms-
marco-MiniLM-L-6-v2) семейства MiniLM. Кросс-энкодер — модель, которая принимает эта-
лонный и сгенерированный текст, а затем оценивает степень их семантического сходства на 
уровне предложений.

Второй способ использует модель реранкер (BAAI/bge-reranker-v2-m3), которая представ-
ляет собой улучшенную архитектуру для задачи passage reranking. Данная модель обучена на 
множестве текстовых пар «вопрос–ответ» и выполняет более сложное семантическое сопо-
ставление, оценивая вероятность того, что сгенерированный текст отвечает поставленному 
запросу. В отличие от кросс-энкодера, реранкер оптимизирован именно для задач поиска и от-
бора релевантных текстовых фрагментов. Итоговые значения позволяют оценить, насколько 
полученные ответы соответствуют ожиданиям с точки зрения их содержательной точности.
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Третий способ оценки основывался на использовании метрик ROUGE, которые часто 
применяются для проверки качества автоматически сгенерированных текстов [9]. В работе 
применялись три показателя: ROUGE-1, ROUGE-2 и ROUGE-L. Первая метрика (ROUGE-1) 
оценивает, сколько отдельных слов совпадает между ответом модели и правильным текстом. 
Вторая (ROUGE-2) анализирует совпадения пар слов, что позволяет лучше учитывать кон-
текст. Третья метрика (ROUGE-L) показывает, насколько длинные последовательности слов 
совпадают в обоих текстах. Чем выше значения этих показателей, тем ближе ответ модели по 
смыслу и структуре к правильному.

Совокупное использование этих трёх способов обеспечивает многоуровневую оценку ка-
чества ответов RAG-системы. Такой подход обеспечивает более объективные показатели кор-
ректности, полноты и логической согласованности полученных ответов. Значения оценок для 
всех способов были приведены к диапазону от 0 до 1. 

Все представленные далее результаты были получены для примера тестового запроса “What 
is Multi-Energy System?” и эталонного текста ответа на данный запрос. Значения оценок в зави-
симости от размера чанка для векторной базы Chroma, модели эмбеддингов nomic-embed-text 
и разных способов поиска релевантной информации приведены в табл. 1.

Таблица 1
Значения оценок в зависимости от размера чанка

Размер чанка Reranker CrossEncoder ROUGE-1 ROUGE-2 ROUGE-3
similarity search

500 0,922 0,937 0,931 0,904 0,931
1000 0,445 0,487 0,298 0,065 0,169
1500 0,564 0,567 0,279 0,052 0,143

retriever = MMR
500 0,922 0,937 0,931 0,904 0,931

1000 0,445 0,487 0,298 0,065 0,169
1500 0,564 0,567 0,279 0,052 0,143

similarity search + LLM
500 0,967 0,918 0,662 0,467 0,561

1000 0,783 0,724 0,338 0,055 0,176
1500 0,565 0,27 0,243 0,071 0,139

Из анализа табл. 1 видно, что самые высокие оценки по всем показателям получаются для 
размера чанка равного 500, независимо от используемого способа поиска релевантной инфор-
мации. Для размеров чанка 1000 и 1500 оценки получаются значительно ниже. Аналогичная 
картина наблюдалась и для других векторных баз. Это можно объяснить тем, что при уве-
личении размера чанка свыше 500 повышалось покрытие контекста, но снижалась избира-
тельность, что иногда приводило к включению нерелевантных фрагментов и потере точности. 
Данный результат хорошо согласуется с результатами, полученными в работе [5].

Значения оценок в зависимости от используемой модели эмбеддингов для векторной базы 
Chroma, размера чанка 500 и разных способов поиска релевантной информации приведены 
в табл. 2. Модели эмбеддингов расположены в порядке убывания значения в рейтинге MTEB.

Анализ данных табл. 2 показывает, что наилучшие результаты показали модели эмбед-
дингов BAAI/bge-m3, intfloat/e5-large-v2 и nomic-embed-text. При этом, на примере модели 
multilingual-e5-large-instruct, видно, что высокое положение в рейтинге MTEB не всегда гаран-
тирует высокие оценки. Аналогичные результаты наблюдались и для других векторных баз.
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Таблица 2
Значения оценок в зависимости от модели эмбеддингов

Модель эмбеддингов Reranker CrossEncoder ROUGE-1 ROUGE-2 ROUGE-3
similarity search

multilingual-e5-large-instruct 0,599 0,530 0,161 0,036 0,107
bge-m3 0,922 0,937 0,931 0,904 0,931
e5-large-v2 0,922 0,937 0,931 0,904 0,931
nomic-embed-text 0,922 0,937 0,931 0,904 0,931
gte-large 0,594 0,549 0,374 0,065 0,181
all-mpnet-base-v2 0,526 0,436 0,265 0,054 0,142
all-MiniLM-L6-v2 0,399 0,392 0,331 0,077 0,140

retriever = MMR
multilingual-e5-large-instruct 0,599 0,530 0,161 0,036 0,107
bge-m3 0,922 0,937 0,931 0,904 0,931
e5-large-v2 0,922 0,937 0,931 0,904 0,931
nomic-embed-text 0,922 0,937 0,931 0,904 0,931
gte-large 0,594 0,549 0,374 0,065 0,181
all-mpnet-base-v2 0,557 0,569 0,395 0,08 0,237
all-MiniLM-L6-v2 0,599 0,530 0,161 0,036 0,107

similarity search + LLM
multilingual-e5-large-instruct 0,720 0,465 0,224 0,045 0,119
bge-m3 0,974 0,881 0,676 0,467 0,619
e5-large-v2 0,973 0,907 0,667 0,451 0,528
nomic-embed-text 0,967 0,918 0,662 0,467 0,561
gte-large 0,683 0,564 0,338 0,075 0,206
all-mpnet-base-v2 0,612 0,492 0,26 0,047 0,153
all-MiniLM-L6-v2 0,632 0,516 0,258 0,031 0,167

Значения оценок в зависимости от используемой векторной базы для модели эмбеддингов 
BAAI/bge-m3, размера чанка 500 и разных способов поиска релевантной информации приве-
дены в табл. 3.

Анализ данных табл. 3 позволяет сделать вывод о том, что для модели эмбеддингов BAAI/
bge-m3 значения оценок практически не зависят от используемой векторной базы. Аналогич-
ная результаты наблюдались и для моделей эмбеддингов intfloat/e5-large-v2 и nomic-embed-text.

Дополнительно проводилось сравнение трёх подходов поиска релевантной информации. 
В простом режиме similarity search система возвращала наиболее близкие по векторной дистан-
ции фрагменты текста без дополнительной фильтрации, что обеспечивало высокую скорость 
выполнения запросов. Применение retriever-механизма с алгоритмом MMR для моделей эм-
беддингов BAAI/bge-m3, intfloat/e5-large-v2 и nomic-embed-text давало аналогичные значения 
оценок. При использовании подхода similarity search + LLM реранкер позволял получить наи-
лучшие значения оценок, кросс-энкодер давал оценки несколько ниже, чем для двух предыду-
щих способов поиска релевантной информации, а метрики ROUGE для моделей эмбеддингов 
BAAI/bge-m3, intfloat/e5-large-v2 и nomic-embed-text показывали самые низкие оценки. Следо-
вательно, применение LLM не гарантирует высокую степень совпадения между ответом модели 
и эталонным текстом, но обеспечивает высокую степень содержательной точности ответа.
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Таблица 3
Значения оценок в зависимости от векторной базы

Векторная база Reranker CrossEncoder ROUGE-1 ROUGE-2 ROUGE-3
similarity search

Chroma 0,922 0,937 0,931 0,904 0,931
Qdrant 0,922 0,937 0,931 0,904 0,931
SKLearn 0,922 0,937 0,931 0,904 0,931

retriever = MMR
Chroma 0,922 0,937 0,931 0,904 0,931
Qdrant 0,922 0,937 0,931 0,904 0,931
SKLearn 0,922 0,937 0,931 0,904 0,931

similarity search + LLM
Chroma 0,974 0,881 0,676 0,467 0,619
Qdrant 0,974 0,889 0,642 0,415 0,584
SKLearn 0,960 0,864 0,647 0,463 0,529

Заключение

В ходе проведенных экспериментов были протестированы различные конфигурации 
RAG-системы с варьированием ее ключевых параметров — размера чанка, типа векторных 
баз, моделей эмбеддингов и способа поиска релевантной информации. Анализ результатов 
экспериментов позволяет сделать вывод, что качество ответов RAG-системы существенно за-
висит от размера чанка и выбора модели эмбеддингов.

Наилучшие результаты были получены при использовании размера чанка 500 символов, 
моделей эмбеддингов BAAI/bge-m3, intfloat/e5-large-v2, nomic-embed-text и любой из рассмо-
тренных в исследовании векторных баз. Варианты конфигурации RAG-системы с использова-
нием данных параметров показали максимально высокие значения метрик, что свидетельству-
ет о высокой степени смыслового совпадения между ответом модели и эталонным текстом. 
Использование LLM после этапа поиска привело к росту показателя RerankerScore и улучше-
нию качества ответов, несмотря на заметное снижение метрик CrossEncoderScore и ROUGE. 

Таким образом, отмеченные комбинации размера чанка, моделей эмбеддингов и векторных 
баз признаны наиболее сбалансированными по точности и качеству генерируемых ответов.
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РАЗРАБОТКА ИНТЕРВАЛЬНЫХ СВЕРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ 
ДЛЯ РЕШЕНИЯ ЗАДАЧ С НЕОПРЕДЕЛЕННОСТЬЮ

МИРЭА – Российский технологический университет

А. П. Гонец, П. В. Сараев

Аннотация. В данной работе предложено решение для обработки изображений с интер-
вальной неопределенностью. Описана базовая структура сверточной нейронной сети, в 
частности архитектура LeNet, представлены основные операции подвыборки, функции 
активации. Приведены основы интервального анализа с базовыми характеристиками и 
операциями интервальной арифметики. Предложена новая архитектура — интервальные 
сверточные нейронные сети — для обработки изображений с интервальной неопределен-
ностью, представлены варианты реализации, обоснован выбор интервальных операций с 
данными. Показаны результаты вычислительных экспериментов, демонстрирующие пер-
спективы предложенных решений.
Ключевые слова: интервальные сверточные нейронные сети, компьютерное зрение, 
LeNet, интервальный анализ.

Введение

В современном мире автоматизированная обработка изображений является важной ча-
стью для ускорения выполнения задач, уменьшения вероятности человеческой ошибки и улуч-
шения обнаружения скрытых закономерностей. Бурное развитие технологий компьютерного 
зрения началось с разработки архитектуры сверточных нейронных сетей в конце прошлого 
века, которые в настоящий момент остаются эффективным решением для задач различного 
уровня сложности обработки изображений.

При наличии зашумленности в данных по причинам особенностей их передачи по сети или 
первичной обработки высока вероятность, что при восстановлении качество изображений мо-
жет быть сильно ухудшено. Это усложняет получение достоверных выводов об информации, 
имеющейся на изображениях. Таким образом, в данных появляется некая неопределенность, 
которая не отслеживается при восстановлении. Данная проблема обуславливает необходи-
мость разработки новой архитектуры нейронных сетей на основе сверточных, которая будет 
учитывать входную неопределенность для получения интервальной оценки классификации.

1. Инструменты решения проблемы

1.1. Сверточная нейронная сеть

В 1998 году благодаря улучшению качества наборов данных для обучения моделей Ян Ле-
Кун разработал архитектуру LeNet-5, обладающую высокую точность для распознавания изо-
бражений [1]. Данная архитектура заложила фундамент для современных сверточных ней-
ронных сетей. Многие из ее основных принципов используются до сих пор в исходном или 
усовершенствованном виде. В рамках текущего исследования данная архитектура взята за ос-
нову благодаря своей простоте и наличию основных видов операций с данными.

Сверточные нейронные сети позволяют выделять важные объекты с изображений при 
минимальной предварительной обработке данных. Сами изображения представляют из себя 
двумерный массив вещественных или целочисленных чисел, которые отвечают за характе-
ристики каждого пикселя. На рис. 1 представлена типовая структура сверточной нейронной 
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сети LeNet [1]. В оригинальной архитектуре на входе используется одноканальное изображе-
ние размером 32 × 32 пикселя, которое сначала обрабатывается путем использования двух по-
следовательных сверток (convolution) с подвыборками (subsampling), а затем с помощью трех 
полносвязных слоев (full connection), где последний позволяет получить значения для десяти 
классов — изображение относится к тому классу, у которого выходное значение соответству-
ющего нейрона больше. При этом функцией активации для каждого слоя первоначально яв-
лялся гиперболический тангенс, типом подвыборки являлся усредненный пулинг, а функцией 
потерь была среднеквадратичная ошибка.

За прошедшее время операции и функции, которые применяются в сверточных нейронных 
сетях, заметно модифицировались. На рис. 2 представлены основные функции активации, ко-
торые могут использоваться после сверточных или внутренних полносвязных слоев.

Формулы ранее представленных функций активаций на рис. 2.

Основными видами подвыборок являются выбор среднего значения окна и выбор мак-
симального значения окна. Вместо среднеквадратичной ошибки (MSE) чаще используется в 
качестве функции потерь кросс-энтропия, показывающая различие между двумя вероятност-
ными распределениями:

	 ( ) ( ) ,ˆ, l ˆogi i
i

CrossEntropy y y y y= −∑
где iy  — действительная принадлежность объекта к классу ,i  ˆiy  — предсказанная вероят-
ность принадлежности объекта к классу .i

Вышеуказанные элементы могут быть добавлены в оригинальную архитектуру LeNet. Для 
этого необходимо будет провести экспериментальные вычисления с различными комбинаци-
ями для выявления оптимальных параметров.

1.2. Элементы интервального анализа

Интервальная неопределенность возникает при частичном знании о величине, которая ха-
рактеризуется своими нижней и верхней границами [2]. В отличие от описаний с помощью не-

Рис. 1. Архитектура сверточной нейронной сети LeNet

Рис. 2. Функции активации и их графики
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ограниченных множеств, приводящих к потере содержательности при операциях, интервалы 
обеспечивают управляемость вычислений. Их преимуществом является простота представ-
ления, так как для задания одномерного интервала достаточно двух чисел (нижняя и верхняя 
граница, либо середина и радиус интервала), что делает их менее сложными, чем вероятност-
ные распределения или нечеткие множества. По своей сути, интервал является простым под-
множеством вещественных чисел, определяющим диапазон возможных значений:

	 ,  , =  a a a

где a  — нижняя граница интервала ,a  a  — верхняя граница интервала .a  Основными харак-
теристиками интервала являются его середина и радиус:

	
( )
( )

mid 2,

rad 2.

= +

= −

a a a

a a a

Различные свойства данных характеристик позволяют находить середину и радиус произ-
водного интервала от суммы характеристик интервалов и произведения интервала на число. 
Эти свойства крайне важны для операций, связанных с выбором среднего значения в подвы-
борке. Свойства этих характеристик:

	

( )
( )
( )
( )

mid mid   mid ,

rad rad   rad ,

mid   mid , 

rad rad .

a a

a a

± = ±

± = +

= ⋅

= ⋅

a b a b

a b a b

b b

b b
Интервальная арифметика делится на несколько типов. Наиболее часто используемой 

является классическая интервальная арифметика, где базовые арифметические операции, а 
именно сложение, вычитание, умножение и деление выглядят следующим образом:

	 { } { }
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Операция деления является наиболее сложной, так как при делении интервал не может со-

держать нуль [3]. Для разрешения этой проблемы существует несколько подходов, например, 
интервальная арифметика Кэхэна, где используются бесконечные или полубесконечные ин-
тервалы [4]. Важный частный случай интервального умножения соответствует произведению 
числа на интервал:

	
,  , 0,

,  , 0.

a a a
a

a a a

  ≥ ⋅ = 
  < 

b b
b

b b

Преобразование интервалов фактически сводятся к вычислению образов несложных мно-
жеств при различных отображениях. Для любой непрерывной функции справедливо равен-
ство, что область значений функции для интервального аргумента является интервалом от ее 
минимума до ее максимума:

	 ( ) ( ) ( )ran , min ,   max .
x x

f f x f x
∈ ∈

 =  X X
X
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Таким образом, при использовании монотонно возрастающих функций активаций значе-
ния минимума и максимума будут достигаться в точках границ интервала. При применении 
немонотонных функций активаций минимум функции может находиться не на границах ин-
тервала. Если удается разбить область определения функции на участки монотонности, то вы-
числение образа функции остается достаточно простой операцией.

Если интервалы a и b имеют непустое пересечение, то можно дать простые выражения для 
результатов теоретико-множественных операций пересечения и объединения через концы 
этих интервалов: 
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При появлении неправильных интервалов, что обычно бывает при операции пересечении 
непересекающихся интервалов без проверки на наличие общих точек, на помощь приходит 
арифметика Каухера. Правильные и неправильные интервалы переходят друг в друга в ре-
зультате отображения дуализации: 

	 dual : ,  . =  a a a

В таком случае, если интервал правильный, то его проекция соответствует исходному ин-
тервалу, иначе применяется дуализация:
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Приведенные свойства и характеристики интервалов позволяют выполнять операции, ис-

пользуемые в сверточных нейронных сетях. 

2. Архитектура интервальных сверточных нейронных сетей

Интеграция элементов интервального анализа в сверточную нейронную сеть позволяет 
обеспечить достоверную оценку классовой принадлежности того или иного изображения с 
указанием границ оценки. Помимо интервального представления входного изображения, так-
же возможно использование интервального типа данных для весов модели на разных уров-
нях. Это может способствовать увеличению расхождению границ весов в процессе обучения 
и нахождения зоны глобального минимума нелинейной функции нейронной сети. Следует 
выделить несколько этапов реализации — сверточный слой, полносвязный слой, активация, 
подвыборка, получение вероятности принадлежности, обучение модели. 

Операция свертки представляет умножение весов ядра свертки с областью входного изо-
бражения. Таким образом, данную операцию можно реализовать как умножение интервалов 
друг с другом ( )⋅a b  при интервальных весах или умножение значения веса с интервалом 
( ),a ⋅b  и с дальнейшим сложением полученных интервалов ( ).+c d  Для полносвязного слоя 
также могут применяться операции интервального умножения и сложения. 

Функции активации, представленные на рис. 2, являются монотонно возрастающими, бла-
годаря чему нижняя и верхняя границы выходных значений функций соответствуют значе-
ниям на крайних границах интервала. Применение функции ReLU, которая является востре-
бованной в нейронных сетях, может сказаться негативно из-за зануления всех отрицательных 
значений, поскольку нижняя граница интервалов будет часто отрицательной, что приведет к 
постоянному обнулению нижней границы результата применения функции активации. Опти-
мальной функцией активации в таком случае может являться ELU благодаря наличию нели-
нейности в области отрицательных значений.
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В случае применения подвыборок наиболее простыми для представления являются опера-
ции выбора среднего и выбора максимума окна. Если представлять операцию выбора среднего 
как выбор среднего для нижней и верхней границы, то это равнозначно нахождению границ 
интервала через середину и радиус производного интервала от суммы характеристик интерва-
лов и произведения интервала на число, где число будет соответствовать количеству исходных 
интервалов. Операция выбора максимума окна является выбором интервала с максимальным 
верхним значением и нахождения снизу точки пересечения по этому интервалу (попарное пе-
ресечение выбранного интервала с остальными), что будет также равносильно нахождению 
максимумов по нижним и верхним границам всех интервалов:
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Для обучения модели с помощью функции потерь кросс-энтропии необходимо определить 
методику штрафов. Расчет потерь можно производить на основе результатов по средним зна-
чениям каждого интервала, так и по нижним и верхним границам интервала. 

Таким образом, предлагаемое изменение в структуре архитектуры LeNet путем замены ве-
щественных значений на интервальные с приведенными в данном пункте операциями под-
выборки, функциями активации и потерь, а также подходами к образованию сверточных и 
полносвязных слоев позволяют решать задачи с входной неопределенностью. Данное решение 
представляет собой архитектуру интервальных сверточных нейронных сетей.

3. Вычислительные эксперименты

В ходе проверки реализованной модели с различными параметрами, к которым относятся 
функции активации, подвыборки, применяются инициализированные веса на основе обуче-
ния оригинальной модели на наборе данных MNIST, который содержит одноканальные изо-
бражения рукописных цифр до нуля до девяти [5]. Дообучение модели и сравнение результа-
тов с оригинальной выполнено на наборе данных Fashion MNIST, содержащий одноканальные 
изображения различных видов одежды [6]. Набор данных разделен на три части — трениро-
вочный из 60000 изображений, валидационный и тестовый по 10000 изображений каждый. На 
рис. 3 представлен фрагмент набора данных, где верхние изображения соответствуют нижним 
границам входного изображения, а нижние изображения — верхним границам. В табл. 1 пед-
ставлен фрагмент подматрицы размера 5 × 5, состоящей из интервальных данных.

Ввиду того, что изображения имеют размер 28 × 28 пикселей, необходимым условием для 
работы с моделью является добавление смещения при свертке (паддинг) на два пикселя. Пара-
метры обучения представлены в табл. 2.

Рис. 3. Граничные изображения
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Таблица 1
Пример интервальной подматрицы

[14, 28] [126, 157] [12, 45] [10, 43] [23, 54]
[30, 60] [40, 70] [54, 79] [28, 63] [0, 20]
[23, 53] [54, 87] [123, 152] [65, 89] [124, 157]
[57, 92] [255, 255] [12, 32] [234, 250] [3, 7]

[87, 101] [200, 206] [56, 80] [50, 60] [1, 23]
[98, 98] [54, 68] [90, 110] [79, 90] [0, 0]

Таблица 2
Параметры обучения модели

Параметр Значение
Оптимизатор Adam
Максимальное количество эпох 30
Стартовый шаг обучения 0,001
Метод снижения шага обучения Выход на плато
Количество эпох на плато 10
Минимальный шаг обучения 0,00001
Коэффициент снижения шага обучения 0,1
Максимальное количество последовательных эпох с превышением 
минимальной валидации на 10 %

3

Эксперимент работоспособности решения проводился на нескольких вариациях модели 
с дополнительным сравнением с исходной моделью. Шум в данных для обучения и тестиро-
вания может достигать до 10 % от максимального значения каждого пикселя изображения. 
Настраиваемыми параметрами являются функция активации — гиперболический тангенс 
Tanh, ReLU, ELU с коэффициентом нелинейности 1,0, LeakyReLU с коэффициентом угла накло-
на 0,01; способ подвыборки в окне — среднее значение Avg или максимальное значение Max; 
расчет функции потерь кросс-энтропии — по середине интервала Mid, по границам интер-
вала Borders, комбинация из суммы потерь по середине и границам интервала Mixed. Также 
предусмотрено обучение с интервальными весами на последнем полносвязном слое, значения 
которых различаются на 0,002 между собой при инициализации весов. На рис. 4 представлен 
процесс обучения модели с интервальными весами. Оценка точности при обучении учитыва-
лась по вычисленным значениям середин интервалов.

Рис. 4. Графики функции потерь и точности при обучении модели с интервальными весами
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Результаты экспериментов представлены в табл. 3. Точность моделей на тестовом наборе 
данных определялась на основе вычисленных значений в тех точках интервалов — на нижней 
границе, в середине и на верхней границе. Можно сделать вывод, что выдвинутая гипотеза о 
высоком качестве модели с функцией активации ELU оказалась недостаточно верной, так как 
для интервальных данных наилучшие результаты продемонстрировал гиперболический тан-
генс. Наилучшим способом подвыборки при свертки оказалась операция выбора максимума 
из окна свертки. Штрафы модели за ложные ответы по середине интервала совместно со штра-
фами по границам интервала продемонстрировали наилучшие показатели за счет контроля за 
шириной интервала.

Таблица 3
Эксперименты интервальной сверточной нейронной сети

Тип 
весов

Подвыборка Функция 
активации

Данные 
для 

 обучения

Параметр 
функции 

потерь

Кол-во 
эпох

Точность 
обучения 

(в середине 
интервала), 

%

Точность 
тестирования 

(на нижней 
границе; 

в середине; 
на верхней 
границе), %

Float Avg Tanh Исходные – 30 95,7 64,9; 74,1; 65,1
Float Avg Tanh С шумом Mid 30 96,5 65,6; 72,1; 61,3
Float Avg ReLU С шумом Mid 30 95,1 18,8; 45,0; 21,2
Float Avg ELU, α =1,0 С шумом Mid 30 96,1 37,6; 53,8; 40,2
Float Avg LeakyReLU, 

α =0,01
С шумом Mid 30 95,6 10,0; 39,2; 31,4

Float Max Tanh С шумом Mid 30 96,6 88,9; 91,0; 89,0
Float Max ReLU С шумом Mid 30 96,7 26,5; 51,9; 22,3
Float Max ELU, α =1,0 С шумом Mid 25 96,7 40,5; 61,8; 31,4
Float Max LeakyReLU, 

α =0,01
С шумом Mid 18 93,9 11,8; 58,9; 28,8

Float Avg Tanh С шумом Borders 30 95,9 75,8; 76,1; 76,1
Float Avg ELU, α =1,0 С шумом Borders 30 95,9 55,0; 54,5; 53,4
Float Max Tanh С шумом Borders 20 97,4 90,8; 90,8; 90,7
Float Max ELU, α =1,0 С шумом Borders 18 96,7 66,0; 65,4; 63,7
Float Max Tanh С шумом Mixed 30 97,2 90,7; 90,7; 90,7
Float Max ELU, α =1,0 С шумом Mixed 19 97,0 68,5; 68,4; 67,2

Interval, fc3 Max Tanh С шумом Mixed 20 97,4 90,8; 90,7; 90,6
Interval, all Max Tanh С шумом Mixed 30 98,3 91,1; 91,2; 90,9

Применение интервальных весов позволило немного улучшить результаты за счет поиска 
оптимальных значений в определенном узком интервале весов модели, но при данном подходе 
для модели со всеми интервальными весами вдвое увеличилось время обучения. С полными 
результатами можно ознакомиться в источнике [7], где расположены исходные наборы данных, 
веса обученных моделей, матрицы ошибок, графики обучения и файлы с параметрами обучения. 

Заключение

В статье предложена архитектура интервальной сверточной нейронной сети на основе ар-
хитектуры LeNet, обученной на наборе данных Fashion-MNIST. Применение элементов интер-
вального анализа позволило решать задачи с входной неопределенностью в изображениях, 
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представляя пиксели в виде интервальных данных. Были разобраны основные функции ак-
тиваций и типы подвыборок в сверточных нейронных сетях, которые охватывают базисные 
аспекты при построении нейросетей данного класса. Экспериментально продемонстрирова-
но, что разработанный инструмент для работы с входной неопределенностью в изображениях 
позволяет решать поставленную задачу классификации. 

В рамках дальнейших исследований запланировано определения диапазона уверенности 
решения по выбору класса, дополнение набора методов подвыборок, а также добавление регу-
ляризации при обучении. 
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ИСПОЛЬЗОВАНИЕ НЕЙРОСЕТЕВЫХ МОДЕЛЕЙ 
ДЛЯ АНАЛИЗА ОБЪЕКТОВ В «ПОЛЕВЫХ» УСЛОВИЯХ

МИРЭА – Российский технологический университет

А. С. Гончаров

Аннотация. В работе рассматриваются подходы к созданию систем анализа объектов с 
использованием нейросетевых моделей в условиях ограниченных вычислительных и се-
тевых ресурсов («полевые» условия). Проведён обзор архитектурных решений и предло-
жены четыре варианта построения систем инференса. Особое внимание уделено реали-
зации архитектуры с интеграцией нейросетевой модели непосредственно в мобильное 
приложение, включая описание используемых программных средств, обработки, хране-
ния и передачи данных. Кроме того, рассмотрены направления дальнейшего развития 
решения.
Ключевые слова: нейросетевые модели, компьютерное зрение, мобильное приложение, 
инференс, автономность, офлайн-инференс, реальное время, инспекция оборудования, 
контроль состояния, носимые устройства, дополненная реальность, TensorFlow Lite, 
PyTorch, YOLO, Android.

Введение

Во всех отраслях, где используется сложное оборудование — в добывающей и перерабатыва-
ющей промышленности, энергетике и нефтегазовом секторе — одной из ключевых задач явля-
ется постоянный контроль его технического состояния [1]. Для своевременного выявления от-
клонений производственных показателей от нормы и предупреждения аварийных ситуаций на 
предприятиях регулярно проводятся осмотры и дефектоскопические исследования. Однако тра-
диционные методы инспекции, основанные на визуальном контроле и ручном заполнении форм, 
отличаются высокой трудоёмкостью, субъективностью оценок и риском человеческих ошибок.

Нейросетевые модели компьютерного зрения (CV) находят широкое применение в автома-
тизации контроля технического состояния оборудования. С их помощью можно решать зада-
чи по определению комплектности устройств, обнаружению дефектов — таких как коррозия, 
трещины или механические повреждения, — а также по оценке состояния оборудования в 
реальном времени. Подобные системы способны выявлять аномалии с точностью, превосхо-
дящей возможности человека, особенно в условиях усталости, недостаточного освещения или 
ограниченного времени инспекции.

Современные технологии переходят к интеграции инференса непосредственно в носимые 
устройства — такие как AR-очки, защищённые планшеты и смарт-камеры, — где камера, вы-
числительный модуль и интерфейс объединены в компактный корпус. Эти решения способны 
работать полностью автономно, обеспечивая офлайн-инференс даже в сложных условиях — в 
шахте, на вышке или в пустыне — без подключения к облаку и с мгновенным AR-наложением 
результатов прямо в поле зрения пользователя.

При этом в «полевых» условиях — на удалённых подстанциях, в подземных коммуника-
циях, на высотных опорах ЛЭП или в зонах с нестабильной связью — возникают факторы, 
существенно влияющие на архитектуру решений:

• Отсутствие или нестабильность сети делает невозможным использование облачных вы-
числений.

• Ограниченность ресурсов устройства: ограничены вычислительная мощность, объём 
памяти и запас энергии; батареи должно хватать на 4–8 ч, тепловыделение — минимальное.
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• Время отклика: результат должен формироваться в реальном времени, задержка более 
200 мс недопустима при работе на высоте или в движении.

• Эргономика и безопасность эксплуатации: масса дополнительного снаряжения — не 
более 500 г; устройство не должно мешать защитной экипировке (каске, СИЗ) и отвлекать 
пользователя от окружающей среды.

• Конфиденциальность данных: передача изображений по открытым каналам недопусти-
ма в соответствии с требованиями информационной безопасности.

Эти ограничения требуют разработки полностью автономных решений, интегрированных 
непосредственно в устройства пользователя, чтобы инференс выполнялся локально, резуль-
таты формировались с минимальной задержкой, а данные оставались защищёнными и пере-
давались только по безопасным каналам [2].

1. Варианты архитектуры

Современные системы анализа изображений можно классифицировать по способу разме-
щения модели и выполнению инференса. В табл. 1 представлены основные варианты архитек-
турных решений, их преимущества, ограничения и типичные области применения.

Таблица 1
Преимущества и недостатки анализируемых вариантов архитектуры

№ Архитектура Преимущества Недостатки Применение
1 Облачный 

инференс 
через интернет/ 
Wi-Fi

• Доступ к мощным GPU
• Возможность 
использования крупных 
моделей
• Централизованное 
обновление моделей

• Зависимость от 
стабильности сети
• Задержки при передаче 
данных
• Расходы на трафик 
и инфраструктуру 
(сетевое оборудование)

• Стационарные объекты 
с гарантированным 
доступом к сети

2 Локальный 
инференс- 
сервер 
(Rockchip, 
NVIDIA Jetson 
и аналоги)

• Автономность
• Поддержка моделей 
среднего размера 
(в зависимости 
от вычислительной 
мощности)
• Повышенная 
безопасность данных

• Необходимость 
дополнительного 
оборудования
• Сложность логистики
• Ограниченная 
мобильность

• Мобильные комплексы, 
дроны, робототехника

3 Инференс 
«на борту» 
устройства 
(смартфон, 
планшет, AR-очки)

• Полная автономность
• Минимальная задержка
• Отсутствие передачи 
данных
• Простота эксплуатации

• Ограниченный 
размер моделей 
(обычно < 100 МБ) 
• Зависимость от 
аппаратных ресурсов

• Индивидуальные 
инспекции в зонах без 
связи

4 Отложенный 
инференс 
(анализ после 
съёмки)

• Отсутствие 
требований к работе 
в реальном времени
• Возможность 
использования крупных 
моделей
• Минимальное 
энергопотребление 
при съёмке

• Отсутствие мгновенного 
результата
• Необходимость 
хранения больших 
объёмов данных
• Риск потери носителя
• Нет возможности 
оперативного 
реагирования

• Периодические обходы 
с обработкой на базе
• Пост-анализ 
инцидентов
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На рис. 1 схематично показаны рассмотренные варианты архитектуры.

С учётом необходимости полной автономности, минимальной задержки, защиты данных 
и работы в условиях отсутствия или нестабильной сети, был выбран вариант 3 — инференс 
«на борту» устройства. Этот подход позволяет выполнять анализ непосредственно на смарт-
фоне, планшете или AR-очках, обеспечивая мгновенную обратную связь и независимость от 
облачных сервисов, что критично для «полевых» инспекций и индивидуального контроля 
оборудования.

2. Реализация варианта «на борту»

Рассмотрим реализацию архитектуры с локальным инференсом на примере приложения, 
разработанного для анализа комплектности и состояния оборудования в реальном времени.

2.1. Архитектура приложения

Архитектура разработанного приложения построена по принципу клиент-сервер с чёт-
ким разделением функций: 

• клиентская часть отвечает за сбор данных, локальный инференс и взаимодействие с 
пользователем;

• серверная часть отвечает за централизованное хранение, аналитику и обновление моделей. 
Такой подход обеспечивает автономность приложения в полевых условиях, оставляя при 

этом возможность синхронизации данных при появлении сетевого подключения.

Клиентская часть (Android)
Клиентская часть разработана на языке программирования Kotlin с использованием среды 

разработки Android Studio. Захват видеопотока осуществляется через CameraX API, обеспе-
чивающий стабильную работу на широком спектре устройств. Навигация по экранам реа-

                                            а                                                                            б

                                 в                                                                                         г
Рис. 1. Варианты архитектуры:

а — Облачный инференс через интернет/Wi-Fi, б — Локальный инференс-сервер, 
в — Инференс «на борту» устройства, г — Отложенный инференс
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лизована с помощью Jetpack Compose — надёжного и масштабируемого решения от Google. 
Сетевое взаимодействие выполняется через библиотеку Retrofit2 в связке с OkHttp, что гаран-
тирует эффективную передачу данных при минимальных накладных расходах.

Локальный инференс реализован на базе TensorFlow Lite с поддержкой аппаратного уско-
рения, что критично для производительности на мобильных устройствах.

Хранение данных (результаты инспекций, кэш изображений) организовано через Room 
Database — надстройку над SQLite, обеспечивающую безопасное и структурированное хране-
ние данных в офлайн-режиме.

Серверная часть (Python)
Backend реализован на FastAPI — асинхронном высокопроизводительном фреймворке, 

оптимизированном для обработки большого числа параллельных запросов.
Асинхронная обработка и загрузка данных выполняются с помощью asyncio, что позволя-

ет минимизировать задержки при массовых операциях.
Цепочка подготовки моделей включает стадии: 
PyTorch (Ultralytics) → ONNX → TensorFlow Lite, 

что обеспечивает переносимость и оптимизацию модели под мобильные устройства.
Хранение данных осуществляется в промышленной СУБД PostgreSQL, поддерживающей 

масштабирование, резервное копирование и интеграцию с BI-инструментами.
Обучение моделей выполняется с использованием Ultralytics YOLOv8, лидера в задачах 

детекции объектов в реальном времени.
Таким образом, архитектура сочетает автономность клиентского устройства с гибкостью 

серверной аналитики, обеспечивая масштабируемость и готовность к интеграции в корпора-
тивные системы мониторинга и технического обслуживания.

2.2. Подготовка модели

Обучение базовой модели
Для задачи детекции комплектности оборудования использовалась облегчённая архитек-

тура YOLOv8n (Ultralytics) — оптимальный выбор для мобильных устройств за счёт баланса 
скорости и точности. 

Обучение проводилось на собственном датасете, включающем 500 изображений моду-
лей и антенн, содержащем 4 класса объектов: антенна, модуль, комплектный набор, неком-
плектный набор. 

Основная цель — автоматическое определение комплектности оборудования.
Для повышения обобщающей способности применялись методы аугментации: Mosaic 

(комбинирование 4 изображений в одно), RandomPerspective (случайные перспективные ис-
кажения), HSV-шум (изменение оттенка, насыщенности и яркости) и др.

На валидационной выборке достигнуто значение mAP@0.5 = 0.94, что подтверждает высо-
кую точность модели.

Оптимизация модели
Для адаптации к мобильным устройствам выполнено квантование в формат float16, что 

позволило уменьшить размер модели и ускорить инференс без существенной потери точно-
сти.

Цепочка конвертации: PyTorch → ONNX → TensorFlow Lite (float16).
Итоговый файл модели (.tflite) встроен в приложение в виде ресурса.



226

Интеграция в приложение 
Модель хранится в папке assets и загружается при запуске приложения. 
Для выполнения инференса используется TensorFlow Lite Interpreter с аппаратным уско-

рением, что обеспечивает стабильную работу даже на смартфонах среднего класса.

2.3. Обработка видеопотока

Видеопоток обрабатывается по конвейеру: 
захват → предобработка → инференс → визуализация.
Камера через CameraX API формирует данные в формате ImageFormat.YUV_420_888 — 

оптимальном для Android (подходит для быстрых преобразований, энергоэффективен). 
Каждый кадр масштабируется до 640 × 640 пикселей (вход YOLOv8n) и нормализуется в 

диапазон [0, 1]. Преобразование YUV → RGB выполняется нативно, с минимальной задержкой.
Результаты инференса — рамки, метки классов (антенна, модуль, комплектный, некомплект-

ный) и вероятность (уверенность модели) — отображаются поверх видеопотока с помощью 
OverlayView на базе Canvas, обеспечивая мгновенную визуальную обратную связь оператору.

На рис. 2 приведены примеры результатов инференса на обычном смартфоне.

2.4. Сохранение и передача данных

Система обеспечивает надёжное локальное хранение и автоматическую синхронизацию 
данных при восстановлении сети. 

Рис. 2. Пример инференса «на борту» обычного смартфона (без аппаратного 
ускорителя): слева — детекция комплектного набора, справа — некомплектного
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Каждый результат анализа сохраняется в Room Database в формате JSON, содержащем 
полную информацию об инспекции: фотографию, координаты, уверенность модели и итого-
вый статус объекта.

При подключении к сети (Wi-Fi, 4G/5G) данные передаются на сервер через REST API. 
Информация на сервере агрегируется по объектам, датам и исполнителям и используется 

для формирования отчётов, включающих изображения, графики и статистику.

2.5. Преимущества решения

Разработанное решение сочетает автономность, производительность и простоту эксплуа-
тации, что делает его оптимальным инструментом для полевых инспекций. В табл. 2 приведе-
ны ключевые метрики, полученные в ходе тестирования.

Таблица 2
Ключевые метрики решения

Параметр Значение
Автономность Полная — работа без интернета, сети и облака
Скорость инференса 5–15 fps (Snapdragon 8 Gen 1)
Размер модели 6 МБ (после квантования и прунинга)
Точность mAP@0.5 = 0.94
Энергопотребление +20 % к фоновому режиму при активной съёмке

3. Анализ существующих аналогов

Существующие мобильные решения для технической инспекции можно условно разделить 
на два класса — без использования технологий искусственного интеллекта и с их примене-
нием, в том числе с элементами дополненной реальности (AR). 

К первой группе относятся такие системы, как «Мобильные сотрудники» (МТС, https://
agents.mts.ru/about-products/mobilnie-sotrudniki), «Мобильный инспектор» (ООО «БИТ», 
https://bit76.ru/solutions/mobile-inspector), «Мобильный контролёр» (DBA Group, https://dba.
ooo/solutions/mobile) и «Т-Мобис» (ООО «Траектория времени», https://timepath.ru/t-mobis-
mk/). Они ориентированы преимущественно на автоматизацию документооборота и органи-
зацию производственных осмотров: ведение чек-листов, формуляров, фиксацию фото, а также 
интеграцию с корпоративными учётными системами. Интеллектуальный анализ изображе-
ний или автоматическое распознавание объектов в этих продуктах, как правило, отсутствуют.

Вторая группа включает решения, которые сочетают AR и методы анализа с применением 
нейросетей. К ним относятся отечественная платформа ИКСАР (ООО «ИКСАР Технологии», 
РФ, https://iksar.pro/platform), решения Inspect AR (AR Inspect, Германия, https://inspect-ar.com), 
Inspeq Krank (Krank Limited, Великобритания, https://www.krank.com/inspeq), Cendiant Inspect 
Mobile (Musashi AI, Япония/США, https://musashiai.com/#cendiant), а также международные 
AR-платформы: Vuforia (PTC, США, https://developer.vuforia.com/library/vuforia-engine/images-
and-objects/model-targets/model-targets/), Augmentir (Augmentir, США, https://www.augmentir.
com/product/augmented-reality) и Frontline (TeamViewer, Германия, https://frontline.io/mobile/). 
Эти системы предоставляют визуализацию подсказок и инструкций, распознавание объек-
тов и дефектов с применением глубокого обучения, поддержку удалённого взаимодействия 
с экспертами и интеграцию с корпоративными данными. При этом большинство подобных 
решений полагается на облачные вычисления, что ограничивает их использование при неста-
бильной или отсутствующей сети.
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Разработанное решение реализует полный офлайн-инференс нейросетевой модели не-
посредственно на мобильном устройстве, сохраняя при этом поддержку AR-наложений. 
Такой подход объединяет преимущества обеих групп: высокую автономность, мгновенную 
обратную связь и независимость от сетевой инфраструктуры. Это делает систему особенно 
эффективной в «полевых» условиях — на удалённых подстанциях, в шахтах, на высотных опо-
рах и в других зонах, где традиционные облачные технологии неприемлемы.

4. Дальнейшее развитие

В перспективе планируется развитие системы по нескольким направлениям, связанным 
с повышением точности анализа, расширением функциональности и улучшением пользова-
тельского опыта.

1. Распознавание положения элементов.
Планируется внедрение анализа ключевых точек (keypoints) для оценки положения и со-

стояния таких компонентов, как тумблеры, рукоятки и разъёмы.
Использование архитектур типа YOLOv8-pose позволит определять состояния «включено/

выключено» или «подключено/отсоединено», обеспечивая более детальную диагностику обо-
рудования.

2. Добавление новых классов.
Планируется расширение набора распознаваемых элементов (например, пломбы, индика-

торы, элементы крепления) без необходимости перекомпиляции приложения.
Для этого будет реализован механизм загрузки обновлённых моделей в формате .tflite не-

посредственно с сервера.
3. Оптимизация производительности.
Основная цель — достижение стабильной частоты 10–15 кадров в секунду на устройствах 

среднего ценового сегмента за счёт оптимизации вычислительных операций и использования 
ускорителей (GPU, NPU).

4. Расширение поддержки платформ.
Планируется интеграция с AR-устройствами, такими как RealWear Navigator 500/520, что 

позволит использовать систему в режиме дополненной реальности без участия смартфона.
5. Улучшение взаимодействия с пользователем.
Будет реализована поддержка голосовых команд и подсказок (на основе технологий 

Speech-to-Text и Text-to-Speech), а также адаптивный интерфейс, автоматически выделяющий 
зоны интереса и предлагающий пошаговые инструкции при обнаружении некомплектности.

Заключение

Разработанное программное решение с использованием нейросетевой модели, встроенной 
в мобильное приложение, обеспечивает автономную обработку данных и анализ состояния 
оборудования в реальном времени. Система надёжно функционирует в условиях отсутствия 
интернета и Wi-Fi, сохраняя все результаты локально до момента синхронизации.

Ключевые преимущества решения:
• Повышает скорость и удобство осмотра оборудования оператором.
• Снижает вероятность человеческих ошибок.
• Исключает зависимость инференса от сетевого подключения.
• Обеспечивает интеграцию с централизованным хранилищем данных при наличии свя-

зи — с возможностью формирования отчётов и аналитики.
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В перспективе система может быть дополнена новыми классами объектов, функцией ана-
лиза положения элементов оборудования, поддержкой мультимодальных данных (звук, ви-
брация), а также усовершенствованным пользовательским интерфейсом.

Современные тенденции цифровизации подтверждают актуальность данного подхода: по 
данным IDC (Q2 2025), мировой рынок носимых устройств демонстрирует рост на 9,6 % год к 
году, причём умные очки становятся ключевым драйвером enterprise-решений [3]. Это от-
крывает путь к дальнейшему переходу от смартфонов к носимым устройствам с локальными 
системами искусственного интеллекта.
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Аннотация. В научной работе рассматривается автоматизированное решение проблемы 
неконтролируемого распространения сорных растений и инфекционных заболеваний 
сельскохозяйственных культур в агропромышленном комплексе путём подключения 
дополнительного оборудования к используемой промышленной технике с внедрённой 
системой CNN. Производится изменение архитектуры гибридной схемы для лучшей ав-
томатизации процесса. Есть возможность отслеживания стабильности роста процента 
точности работы системы с помощью графиков точности и потерь.
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Введение

Стихийное распространение сорных растений и заболеваний сельскохозяйственных куль-
тур продолжает оставаться одной и ключевых проблем для агропромышленного комплекса 
[1]. Настоящее исследование ставит своей целью разработку гибридного программного обе-
спечения, предназначенного для автоматического выявления и категоризации угроз. В основе 
подхода лежит комбинация двух моделей: свёрточной нейронной сети (CNN), отвечающей за 
высокоточную классификацию, и YOLO, обеспечивающей локализацию объектов в режиме 
реального времени [2, 3]. Такой синтез позволяет единовременно осуществлять как оператив-
ное обнаружение нежелательной растительности, так и диагностику фитосанитарного статуса 
посевов.

1. Научная и практическая значимость

С научной точки зрения, значимость работы заключается в предложении инновационной 
двухуровневой архитектуры, которая совмещает функции детекции (YOLO) и классификации 
(CNN). Данная методология предлагает решение для задачи распознавания множества схожих 
классов — различных видов сорняков и болезней. Важнейшим достижением можно считать 
внедрённый механизм адаптивного обучения, дающий возможность дообучать модель на но-
вых типах угроз путём расширения датасета; при этом применение современных методик об-
учения обеспечивает стабильную воспроизводимость итоговых результатов.

Практическая значимость исследования выражается в создании инструмента, готового к 
практическому применению для противодействия сорнякам и фотопатогенам. Разработанная 
система автоматизирует процесс мониторинга полей с привлечением дронов или специальной 
техники, гарантирует своевременное обнаружение угроз, а также создаёт детализированную 
базу данных с геопривязкой, что необходимо для анализа тенденций их распространения и 
последующего прогнозирования. 
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2. Техническая часть

2.1. Работа YOLO и CNN

Традиционные методы мониторинга полей, основанные на визуальном осмотре и ручном 
обходе, трудоёмки и не всегда объективны, а также не обеспечивают раннего выявления про-
блем, что может привести к быстрому распространению сорняков и инфекции и нанесению 
большого ущерба урожаю. Используются и спутниковые данные, к сожалению, обладающие 
недостаточной детализацией для уверенного утверждения фактов [4]. Для решения этой про-
блемы применяется модель You Only Look Once (YOLO), предназначенная для детекции объ-
ектов в реальном времени [3]. Её ключевое преимущество — анализ изображения в один шаг. 
В основе YOLO лежит CNN, последовательно выделяющая признаки изображений — от про-
стых границ до сложных форм, что позволяет точно отличать сорные растения от культурных, 
а больные — от здоровых [5].

Процесс работы YOLO включает два основных этапа:
1. Детекция YOLO: изображение поля разбивается на сетку. Для каждой ячейки определя-

ется вероятность наличия объекта и его предварительный класс.
2. Классификация CNN: обнаруженные объекты передаются на CNN для точной классифи-

кации типа (здоровое растение, конкретный сорняк, вид заболевания)
Модель встроена в камеру, установленную на сельскохозяйственную технику или дрон [1]. 

Камера передаёт изображения на вычислительное устройство, где YOLO проводит анализ дан-
ных и передаёт координаты.

2.2. Keras и TensorFlow

Для дальнейшей реализации используется связка Keras и TensorFlow. TensorFlow приме-
няется как низкоуровневый фреймворк для эффективных вычислений, Keras — как высоко-
уровневый API для создания архитектур, абстракцию от сложностей TensorFlow и удобные 
средства для работы с данными и обучения моделей. Начиная с версии TensorFlow 2.x, Keras 
полностью интегрирован в его состав как основной API (tf.keras), что создает единую среду 
для разработки.

В рамках проекта реализовано гибридное решение, сочетающее потоковую обработку дан-
ных в реальном времени и пакетную обработку для решения комплексных задач. Данный под-
ход позволяет:

– Обеспечивать быстрое реагирование на угрозы в реальном времени;
– Поддерживать высокую точность анализа через глубокую обработку данных;
– Объединять результаты для формирования полной картины состояния посевов;
Работа системы организована на двух уровнях, которые работают параллельно: потоковый 

слой для обработки данных в реальном времени и пакетный слой для углубленного анализа.

2.3. Обучение и работа ML-модели

Для создания датасета используется папка plant_dataset, содержащая классы: disease_type1, 
healthy, weed_type, в каждом из которых находится минимум 15 изображений. В идеале необ-
ходимо создать больше классов и добавить тысячи изображений в каждую, но для примера 
работы можно обойтись и этим. Для тестирования используется изображение поля или расте-
ний с названием test_field.

На первом этапе, при запуске кода происходит детекция YOLO: test_field разбивается на 
сетку, каждая клетка которой отвечает за свой участок картинки, а нейронная сеть предсказы-
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вает, есть ли внутри клетки объект или его часть, прописывает его координаты и указывает, 
к какому классу он относится. На втором этапе каждый обнаруженный объект кадрируется 
и передаётся на вход CNN, реализованной на связке TensorFlow и Keras, для точной класси-
фикации его типа (здоровое растение, вид сорняка, тип заболевания). Такой подход сочетает 
высокую скорость детекции YOLO с точностью классификации CNN, обеспечивая надёжное 
решение для задач точного земледелия [1, 2].

Инициализация загружает предобученную модель YOLO из файла. Детекция использует 
метод predict для обработки изображения, возвращает объект sv.Detections из библиотеки 
supervision, содержащий координаты рамок, уверенность и другие метаданные.

Извлечение регионов — важная функция, которая итерирует по координатам рамок и с 
помощью операции среза NumPy (image [y1:y2, x1:x2]) вырезает все обнаруженные объекты в 
отдельное изображение для дальнейшей классификации.

Процесс решения поставленной цели работает по схеме «Обнаружить => Выделить => 
Классифицировать => Визуализировать»:

1. Обнаружение (Detection): Входное изображение обрабатывается моделью YOLO для на-
хождения ограничивающих рамок всех объектов.

2. Извлечение регионов (Region Extraction): на основе координат от YOLO исходное изо-
бражение разбивается на множество меньших изображений, каждое из которых содержит 
один обнаруженный объект.

3. Классификация (Classification): каждый вырезанный регион масштабируется и подается на 
вход обученной CNN, которая присваивает ему класс и оценивает уверенность предсказания.

4. Визуализация результатов (Visualization & Analysis): исходное изображение аннотирует-
ся цветными рамками и подписями, отражающими результат классификации. Строится отчёт 
с легендой и статистикой.

Этот подход эффективно решает проблему, когда один объект детекции (растение) может 
принадлежать к нескольким классам.

Для обучения используется функция потерь sparse_categorical_crossentropy, что позволяет 
использовать целочисленные метки (0, 1, 2). Применяются callback-функции: ModelCheckpoint, 
EarlyStopping, ReduceLROnPlateau для стабильного и эффективного обучения. Встроенный 
программный комплекс содержит вспомогательные функции: функция plot_training_history 
строит графики точности (accuracy) и потерь (loss) (рис. 1) на тренировочном и валидацион-
ном наборах данных для диагностики качества обучения.

График точности (а) показывает способность модели к обучению: синяя линия (training) 
обозначает точность (accuracy) на обучающем наборе данных, а оранжевая (validation) — точ-
ность на проверочном наборе данных. Обе линии растут на протяжении эпох, проверочная 
точность почти догоняет обучающую, которая достигает значения 0.85. Разрыв между обуча-
ющей и проверочной выборкой мал, что свидетельствует о приемлемом качестве обучения. 
График потерь (б) показывает величину ошибки модели (loss). Чем меньше значение, тем луч-
ше модель минимизирует эту функцию. Здесь синяя линия (training) показывает потери на 
обучающих данных, а оранжевая (validation) — потери на проверочных данных. Обе линии 
идут близко друг к другу и стремятся к значению < 0.4, но с потерями на проверочных данных 
есть небольшие скачки.

Функция draw_detection_results рисует на исходном изображении цветные рамки и под-
писи с уверенностью предсказания. Функция show_detection_result создаёт информативную 
панель, объединяя изображение с результатами и текстовую легенду с детализацией (рис. 2). 
Легенда показывает типы распознаваемых классов (healthy, weed_type1, disease_type1) и ста-
тистику по обнаруженным объектам. Низкая уверенность предсказаний (37–43 %) указывает 
на необходимость проверки экспертом и возможность улучшения модели путём расширения 
датасета.
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В решении поставленной задачи используется скорость и универсальность YOLO для ло-
кализации объектов и точность кастомной CNN для их классификации, что превосходит мо-
нолитные архитектуры по точности на специфичных задачах. В отличие от «чёрного ящика», 
система предоставляет визуально аннотированные результаты и оценку уверенности, что 
крайне важно для агрономов при принятии решений. 

Классификатор можно переобучить на новые виды сорняков или болезней, просто доба-
вив новые данные в соответствующие папки без необходимости переобучать или изменять 
модель детекции [5].

Также код включает проверенные методы, позволяющие модели учиться качественно и из-
бегать ошибок, что свидетельствует о надёжном подходе к разработке ML-моделей. Разрабо-
танное гибридное решение на основе нейронных сетей обладает научной новизной и практи-
ческой ценностью для агропромышленного комплекса.

Исследование выполнено за счет гранта Российского научного фонда № 22-71-10102-П, 
https://rscf.ru/project/22-71-10102-П/

а б
Рис. 1. Графики точности (а) и потерь (б) при обучении нейронной сети

Рис. 2. Результаты анализа изображения
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Заключение

В результате исследования была достигнута цель по созданию информационной системы с 
использованием машинного обучения для обнаружения сорной растительности и диагности-
ки заболеваний сельскохозяйственных культур. Гибридная схема, сочетающая YOLO и свёр-
точную нейронную сеть на TensorFlow/Keras, показала высокую эффективность в распозна-
вании множества биологических угроз. Её двухэтапная архитектура, реализующая принцип 
разделения детекции и классификации, представляет собой научно обоснованный и практич-
ный подход для решения сложных задач компьютерного зрения в сельском хозяйстве.
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АЛГОРИТМ ПОСТРОЕНИЯ БЕРЕГОВОЙ ЛИНИИ ВОДОЁМА 
НА ОСНОВЕ ОБЛАКА ТОЧЕК
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Л. В. Горбенко, А. Ю. Бондаренко, Д. Д. Савлучинская, В. Н. Литвинов

Аннотация. Мониторинг береговой линии водоёма представляет собой важную науч-
но-практическую задачу в контексте изменения климата и антропогенного воздействия 
на прибрежные экосистемы. Существующие детерминированные методы интерполяции 
не позволяют в достаточной мере учесть пространственную структуру данных и явля-
ются чувствительными к шуму. В данной работе рассмотрен алгоритм построения бере-
говой линии водоёма на основе облака точек и представлен подход, который позволяет 
автоматизировать процесс восстановления этой линии и может быть использован для 
мониторинга динамики береговой зоны.
Ключевые слова: геостатистическая интерполяция, ML-модель, Random Forest, Kriging, 
мониторинг, береговая линия, облако точек.

Введение

Береговая линия как динамичная граница раздела сред представляет собой сложный при-
родный объект, требующий регулярного мониторинга [1]. Современные технологии дистан-
ционного зондирования, например, воздушное лазерное сканирование, позволяют получать 
высокоточные трёхмерные модели рельефа. Однако преобразование нерегулярного облака 
лидарных точек в векторное представление береговой линии остаётся сложной научно-техни-
ческой задачей. В статье предложен комплексный подход, сочетающий в себе геостатистиче-
скую интерполяцию для построения адекватной цифровой модели поверхности и машинное 
обучение для семантической сегментации территории на основе комплекса геоморфометри-
ческих показателей. Такой подход существенно повышает точность и позволяет автоматизи-
ровать процесс выделения береговой линии.

1. Алгоритм для ML

Вычислительное устройство получает пакет изображений, сделанные спутником. Данные 
этих изображений фильтруются на подходящие для конкретной задачи снимки. Далее про-
исходит подготовка отфильтрованных изображений – изображения вырезаются по областям 
водоема, что снижает вычислительную нагрузку GPU. 

Для распознавания береговой линии водоема нужно выбрать алгоритм машинного обу-
чения. Был рассмотрен ряд подходящих для нашей задачи: случайные леса (Random Forest), 
градиентный бустинг (Gradient Boosting Machines), Стекинг (Stacking), сравнительная харак-
теристика приведена в табл. 1.

На основе табл. 1 алгоритм Random Forest лучше подходит для нашей задачи из-за скоро-
сти обучения. Алгоритм случайного леса представляет собой метод машинного обучения, ко-
торый строит множество различных деревьев и объединяет их ответы, чтобы получить более 
точный ответ. Данный алгоритм хорошо подходит для задач классификации. Будем фокуси-
роваться на участки пикселей, которые проходят на границы «Вода-суша», а внутренние части 
водоема будем пропускать. Это позволит повысить точность решения и ускорить обработку 
данных. 
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Для решения задачи используем машинное обучение с учителем — классификацию (пред-
сказываем, суша или вода). Алгоритм разбивает изображение на пиксели и каждому присваи-
вает метку «суша» или «вода», в итоге мы получаем неидеальную пиксельную маску водоема.

Метки переводятся в векторный контур, который выглядит как набор отрезков. Подается 
набор массивов связанных отрезков, описывающих геометрию береговой линии. В задачах 
математического моделирования геометрия должна быть описана непрерывной дважды диф-
ференцируемой функцией. Для сглаживания и получения плавной границы водоема будем 
использовать кригинг интерполяцию. Для улучшения точности результатов бинарную маску 
водоема можно разбить на несколько частей и провести кригинг интерполяцию по частям, 
после чего объединить в одно готовое изображение береговой линии.

2. Методы интерполяции для построения ЦМП из облака точек

Kriging (кригинг), в отличие от других методов интерполяции, представляет собой не про-
сто математическую формулу, а целостный геостатистический подход, который позволяет не 
только предсказывать значения, но и оценивать точность этих предсказаний. [2]. Именно это 
делает его предпочтительным для восстановления береговой линии.

Если рассматривать другие методы, например, метод обратных взвешенных расстояний, 
сплайны или триангуляцию, то получим наличие в них недостатков, которые будут мешать 
в решении нашей задачи (табл. 2) [3]. В кригинге таких недостатков нет, что делает его опти-
мальным выбором для точного определения положения береговой линии.

Заключение

На основе проведенного исследования был разработан и представлен комплексный алго-
ритм построения береговой линии водоёма, сочетающий методы машинного обучения и гео-
статистической интерполяции для обработки данных дистанционного зондирования. 

Предложенный подход позволяет автоматизировать процесс выделения береговой линии, 
минимизировать влияние шума в исходных данных и получить результат, пригодный для 
мониторинга динамики береговой зоны. Перспективы дальнейших исследований видятся в 

Таблица 1
Сравнительная характеристика алгоритмов

Случайный лес Градиентный бустинг Стэкинг
Основная идея Создание множества 

независимых деревьев 
на основе случайных 
подбора данных 
и признаков

Создание 
последовательных 
деревьев, где каждое 
новое дерево 
предсказывает ошибки 
предыдущих

Комбинирование 
несколько различных 
алгоритмов 

Процесс 
обучения

Параллельный Последовательный Параллельный- 
последовательный

Скорость 
обучения

Высокая Средняя Низкая

Склонность 
к переобучению

Низкая Высокая Очень высокая

Предсказание Высокое Очень высокое Очень высокое
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адаптации алгоритма для работы с различными типами водоёмов, оптимизации вычислитель-
ных процессов и интеграции с системами непрерывного экологического мониторинга.

Исследование выполнено за счет гранта Российского научного фонда № 25-71-20001, https://
rscf.ru/project/25-71-20001/
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Таблица 2
Сравнительная характеристика методов интерполяции

Метод Принцип работы Ключевые недостатки для задачи
Метод обратных 
взвешенных 
расстояний

Значение в ячейке вычисляется как 
средневзвешенное значений бли-
жайших точек, где вес обратно про-
порционален расстоянию.

Не учитывает пространственную 
структуру и тренды данных. Скло-
нен создавать артефакты «бычьего 
глаза» вокруг точек данных, что мо-
жет исказить плавный переход бе-
реговой линии.

Сплайны Использует математические функции, 
минимизирующие общую кривизну 
поверхности. Результат — гладкая 
поверхность, точно проходящая че-
рез исходные точки.

Чрезмерное сглаживание может ма-
скировать естественные, но резкие 
формы рельефа.

Триангуляция Строит поверхность из множества 
смежных треугольников по исход-
ным точкам (триангуляция Делоне).

Поверхность получается негладкой, 
состоит из граней. Модель может не 
учитывать общих пространствен-
ных тенденций.
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Аннотация. В работе исследуется эффективность методов машинного обучения для 
прогнозирования урожайности сельскохозяйственных культур Центрального Чернозе-
мья. Модели регрессии, древовидных алгоритмов и градиентного бустинга были обучены 
на исторических метеорологических показателях и данных об урожайности. Сравнение 
эффективности проведено с помощью различных метрик качества. Найдены ключевые 
аспекты влияния погодных условий. Результаты исследования показали, что лучшими 
методами оказались бустинговые методы.
Ключевые слова: машинное обучение, прогнозирование урожайности, сравнение алго-
ритмов, метрики качества, агропромышленный комплекс, сельское хозяйство, множе-
ственная регрессия, градиентный бустинг, деревья решений, случайный лес, метод бли-
жайших соседей, метод опорных векторов, нейронные сети.

Введение

Агропромышленный комплекс России — ключевой сектор экономики, обеспечивающий 
продовольственную безопасность и сырьё для смежных отраслей. В условиях глобализации 
и изменения климата особую роль играют зерновые культуры, такие как пшеница, ячмень и 
кукуруза, которые служат основой питания, кормовой базой животноводства и важным экс-
портным ресурсом.

Урожайность зерновых зависит от множества факторов, среди которых погодные усло-
вия — температура, осадки, влажность — оказывают непосредственное влияние на рост, раз-
витие и устойчивость растений к болезням.

Центральное Черноземье, один из самых плодородных регионов России, обладает опти-
мальными условиями для выращивания зерновых. Тем не менее, даже здесь климатические 
аномалии, такие как засухи или избыточные осадки, могут существенно снижать урожай. По-
этому анализ взаимосвязи погоды и урожайности в этом регионе имеет важное научное и 
практическое значение для агробизнеса.

Целью данной работы является исследование эффективности методов машинного обуче-
ния для прогнозирования урожайности сельскохозяйственных культур. Для достижения цели 
в ходе выполнения этой работы будут поставлены и решены следующие задачи: сформировать 
набор данных на основе метеорологических показателей и исторических данных об урожай-
ности; провести предобработку данных (очистка, обработка пропусков, кодирование катего-
риальных признаков); обучить несколько регрессионных моделей машинного обучения; про-
вести сравнительный анализ моделей на основе выбранных метрик (RMSE, MAE, R2); выявить 
наиболее значимые метеорологические признаки, влияющие на урожайность.

1. Описание данных

Для анализа использовались метеорологические данные, агрегированные за вегетацион-
ный период (май–август), который является ключевым для формирования урожая подсолнеч-
ника, кукурузы и яровой пшеницы в Центральном Черноземье. Для каждого года (2020–2024) 
был рассчитан следующий набор данных в период вегетации растений: медианная темпера-
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тура воздуха; медианная относительная влажность воздуха; сумма осадков; количество сол-
нечных дней (лето); сумма активных температур GDD; гидротермический коэффициент ГТК. 
Медиана использована для минимизации влияния выбросов (кратковременных скачков тем-
пературы и влажности). Сумма осадков отражает общее количество влаги, полученное сель-
скохозяйственными культурами естественным путем. Количество солнечных лучей влияет на 
протекание фотосинтеза, укорачивает межфазовые промежутки, особенно этап цветения и 
созревания. GDD (сумма активных температур) ищется умножением базовой температуры 
(подсолнечник — 7 °C, яровая пшеница — 5 °C, кукуруза — 10 °C) на среднее арифметиче-
ское максимальной и минимальной температуры. ГТК (гидротермический коэффициент) ото-
бражает отношение суммы осадков и 10 % сумм среднесуточных температур, превышающих 
10 °C [1,3].

Данный набор признаков позволяет комплексно охарактеризовать тепловой, водный и 
световой режимы вегетационного периода, что критически важно для построения точных мо-
делей прогнозирования урожайности.

2. Методы машинного обучения

Для анализа были выбраны следующие методы:
1. Регрессионный анализ направлен на представление изучаемой зависимости в виде анали-

тической формулы с предварительным выделением зависимых и объясняющих переменных. 
Множественной регрессией называется уравнение связи переменной у и нескольких независи-
мых переменных. Она остается фундаментальным инструментом для установления количе-
ственных зависимостей между метеорологическими параметрами и урожайностью [2, 4].

2. Деревья решений представляют собой непараметрический метод, который строит иерар-
хическую структуру правил для прогнозирования урожайности. Алгоритм рекурсивно разби-
вает пространство признаков на области, минимизируя при этом критерий неоднородности. 
Критерий Джини помогает оценить чистоту получившегося узла, а минимизация дисперсии 
позволяет находить оптимальные границы разбиения. Среднее значение целевой переменной 
по всем наблюдениям формирует в конечном узле прогноз [4, 5].

3. Случайный лес (Random Forest) представляет собой ансамблевый метод, сочетающий 
множество деревьев решений. Каждое дерево строится на случайной подвыборке данных 
(бутстрэп-агрегирование) с использованием случайного подмножества признаков. Прогноз 
получается усреднением всех деревьев. За счет этого повышается стабильность и точность 
модели [5, 6].

4. Градиентный бустинг — метод машинного обучения, где деревья строятся на последова-
тельном построении ансамбля решающих деревьев таким образом, что каждое последующее 
дерево целенаправленно корректирует ошибки предыдущих. Метод особенно эффективен для 
прогнозирования урожайности по метеорологическим данным. XGBoost предотвращает пере-
обучение через регуляризацию и эффективно работает с пропущенными значениями. LightGBM 
использует выборку по градиенту для ускоренного обучения на больших данных [2, 8].

5. Метод k-ближайших соседей — непараметрический метод, основанный на поиске похо-
жих наблюдений. Прогноз вычисляется как среднее значение k ближайших соседей. Это по-
зволяет вести учет локальных закономерностей данных [2].

6. Метод опорных векторов (SVM) строит оптимальную разделяющую гиперплоскость в 
пространстве признаков, используя для этого радиальное базисное ядро. Алгоритм максими-
зирует отклонения между объектами разных классов. Для задач регрессии минимизируется 
разница между фактическими и прогнозируемыми данными [9].

7. Нейронные сети — многослойные модели, которые способны выявлять сложные нели-
нейные зависимости в агрометеоданных. Прогноз формируется последовательным преобра-
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зованием данных через слои нейронов, которые тесно связаны между собой. Это позволяет 
адаптироваться к различным сценариям [7, 10].

Для оценки качества моделей были использованы следующие метрики [2]:
1. MSE — среднеквадратичная ошибка, оценивающая среднюю величину квадрата откло-

нения прогноза от фактических значений;
2. MAE — средняя абсолютная ошибка, отображающая среднюю абсолютную ошибку от-

клонения;
3. R2 — коэффициент детерминации, показывающий, какая часть дисперсии целевой пере-

менной объясняется моделью.
Результаты сравнения эффективности алгоритмов представлены в следующем разделе в 

табл. 1.

3. Сравнение эффективности алгоритмов

Таблица 1
Сравнение метрик качества моделей прогнозирования урожайности

Метод R2 MSE MAE
Линейная регрессия 0.74 75.46 6.62
Случайный лес 0.84 47.39 5.53
Деревья решений 0.83 49.09 5.4
Градиентный бустинг 0.84 45.52 5.36
XGBoost 0.84 46.12 5.37
LightGBM 0.84 46.2 5.46
Метод k-ближайших соседей 0.77 66.38 6.38
Метод опорных векторов 0.77 65.97 6.25
Нейронные сети 0.76 68.72 6.48

На основе табл. 1 можно выделить, что методы градиентного бустинга показали наилуч-
шие результаты. Они хорошо обобщают данные и обладают неплохой точностью. Случайный 
лес также показал хорошие результаты, но немного уступил бустинговым методам. Можно 
сделать вывод, что дерево решений находится в середине рейтинга, это обусловлено склонно-
стью к переобучению и чувствительностью к изменениям. Линейная регрессия, метод опор-
ных векторов, нейронные сети и метод ближайших соседей показали относительно высокие 
ошибки (MSE, MAE) и низкий R2. Это может быть связано с тем, что данные имеют нелиней-
ные зависимости, которые плохо описываются линейными алгоритмами.

Заключение

В ходе исследования эффективности методов машинного обучения для прогнозирования 
урожайности наилучшие результаты показали ансамблевые алгоритмы. Алгоритмы градиент-
ного бустинга и случайный лес превзошли остальные методы.

Разработанные модели могут быть интегрированы в системы поддержки принятия реше-
ний для агропромышленных предприятий. Полученные результаты подтверждают перспек-
тивность применения машинного обучения для сельского хозяйства и повышения точности 
прогнозов урожайности.
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Перспективными направлениями дальнейших исследований являются: учет простран-
ственно-временных особенностей данных, разработка интерпретируемых моделей и создание 
систем мониторинга в реальном времени.
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Аннотация. В статье рассматривается подход к автоматическому извлечению архитек-
турных связей между микросервисами на основе анализа исходного кода с применением 
большой языковой модели (LLM), запущенной локально. Цель исследования — разработ-
ка методики, позволяющей выявлять взаимодействия между сервисами без использова-
ния трассировок и инструментов мониторинга. В работе описана структура данных, ал-
горитм взаимодействия с моделью и проведён эксперимент на репозитории Google Cloud 
Platform Microservices Demo. Полученные результаты показывают, что локальные LLM 
способны достоверно восстанавливать граф взаимодействий и могут быть интегрирова-
ны в системы статического анализа архитектуры.
Ключевые слова: большие языковые модели, микросервисная архитектура, статический 
анализ, граф зависимостей, искусственный интеллект, LLM, программный код.

Введение

Микросервисная архитектура является современным стандартом построения корпоративных 
и облачных систем. Её преимущества — модульность, масштабируемость и независимость раз-
вертывания отдельных компонентов — одновременно создают проблемы анализа и сопровожде-
ния. При увеличении числа сервисов и сложных зависимостей между ними становится трудно 
отслеживать связи между компонентами, особенно при активной разработке и обновлениях [1].

Традиционные инструменты анализа, такие как Jaeger, Zipkin, Kiali, выполняют визуали-
зацию взаимодействий на основе данных трассировки (runtime tracing). Однако подобные ре-
шения не подходят для статического анализа, когда система не запущена или данные монито-
ринга недоступны.

Одним из направлений решения данной задачи является использование больших языко-
вых моделей (LLM), которые способны интерпретировать исходный код, комментарии и доку-
ментацию, формируя семантическое понимание структуры программных систем. Современ-
ные открытые модели (Mistral, Qwen, LLaMA 3) могут быть запущены локально и применены 
для анализа даже без доступа к облачным сервисам.

Таким образом, целью настоящей работы является разработка методики применения ло-
кальной LLM для автоматического извлечения архитектурных связей и построения графа вза-
имодействий микросервисов по исходному коду.

1. Обзор существующих подходов

Современные методы анализа архитектуры программных систем опираются на два клю-
чевых направления: статическое исследование структуры исходного кода и динамическое 
отслеживание поведения системы во время выполнения. Каждое из этих направлений имеет 
свои преимущества и ограничения, которые во многом определяют их роль при анализе ми-
кросервисных архитектур. В условиях, когда архитектура описывается большим количеством 
независимых сервисов, взаимодействующих через сетевые API, необходимость в действенных 
методах анализа становится особенно заметной.
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Статический анализ стремится извлечь информацию, опираясь исключительно на исход-
ный код, конфигурации и определённые договорённости в структуре проекта. Он включает из-
учение импортов, вызовов функций, сетевых обращений, конфигурационных файлов и интер-
фейсов gRPC/HTTP [2]. Наиболее распространённые инструменты — SourceTrail, Understand, 
SonarQube — предоставляют возможность построения графов зависимостей, в том числе в 
виде визуальных диаграмм. Однако возможности таких инструментов ограничены тем, что 
они анализируют код буквально, без глубокого учёта архитектурного контекста. 

Например, если сервис динамически формирует URL-адрес или использует зависимость, 
определённую во внешнем конфигурационном файле, статический анализатор не всегда спо-
собен корректно выявить это взаимодействие. Ещё одним недостатком является чувствитель-
ность к стилю оформлению проекта: если общие соглашения об именовании сервисов или 
структурировании каталогов не соблюдаются, статические методы теряют точность.

Динамический анализ основывается на сборе данных непосредственно во время работы 
системы. Применение распределённого трассинга, логирования запросов и мониторинга по-
зволяет точно фиксировать реальные взаимодействия сервисов. Инструменты вроде Jaeger, 
Zipkin и Prometheus способны строить графы вызовов, отображать задержки, выявлять узкие 
места, а также определять интенсивность обмена данными между сервисами. Динамический 
анализ выгодно отличается достоверностью данных: он фиксирует не потенциальные, а ре-
альные вызовы. Однако он требует полноценного развёртывания системы, настройки трасси-
ровки, а также генерации нагрузки, чтобы получить репрезентативные данные. В ситуациях, 
когда изучаемый проект не запускается или когда анализ проводится на ранних этапах разра-
ботки, применение динамических методов оказывается невозможно.

Развитие больших языковых моделей открыло необычные возможности для интерпретации 
программного кода. В отличие от статических инструментов, которые опираются на формаль-
ные правила анализа, LLM обладают нейросетевой способностью обобщать, интерпретировать 
и реконструировать архитектурные связи на основе контекста, примеров и скрытых законо-
мерностей. С 2021 года появились специализированные модели, ориентированные на работу 
с исходным кодом: CodeBERT, CodeT5, StarCoder, PolyCoder, CodeLLaMA. Эти модели прошли 
обучение на миллиардах строк кода, документации и технических материалов, что сформиро-
вало у них способность понимать типовые структуры проектов, характерные паттерны микро-
сервисов, способы организации сетевых взаимодействий и принципы сервисных API [3].

Особенностью таких моделей является то, что они способны работать не только с синтак-
сисом, но и с семантикой. Например, модель может обнаружить связь между сервисами на 
основе вызова функции клиента gRPC, даже если импорт или явная зависимость не отражены 
в явном виде. Она может определить, что определённое имя переменной, конфигурационный 
параметр или шаблон URL-адреса относится к другому сервису, и сделать вывод о наличии 
взаимодействия. Благодаря способности к обобщению модели иногда выявляют зависимости, 
которые не фиксируются статическим анализом, поскольку они выведены из контекста, а не 
напрямую указаны в коде.

2. Исходные данные и постановка задачи

Для проверки работоспособности предложенного подхода был выбран открытый демон-
страционный проект microservices-demo, опубликованный на GitHub компанией Google. Он 
представляет собой учебный пример микросервисной архитектуры, который широко исполь-
зуется в исследованиях и учебных материалах. Достоинством проекта является его умеренная 
сложность: он содержит достаточно много компонентов и связей, чтобы продемонстрировать 
разнообразие взаимодействий, но при этом остаётся достаточно компактным для полноцен-
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ного анализа. Кроме того, структура кода аккуратно оформлена, что снижает влияние побоч-
ных факторов на точность эксперимента [4].

Архитектура microservices-demo включает одиннадцать микросервисов, каждый из кото-
рых выполняет отдельную роль в работе условного интернет-магазина. Среди них есть сервис 
отображения пользовательского интерфейса, сервис каталога товаров, сервис корзины, сер-
вис оплаты, сервис рекомендаций и другие компоненты, включая хранилище данных. Взаи-
модействие между сервисами организовано преимущественно через HTTP и gRPC, что дела-
ет проект показательной моделью для анализа типичных паттернов микросервисных связей. 
Каждый сервис реализован на языке Go, что упрощает автоматический анализ, поскольку код 
структурирован предсказуемым образом, а клиентские библиотеки gRPC и HTTP имеют узна-
ваемые сигнатуры.

Для проведения исследования необходимо было сформулировать цель и конкретные зада-
чи. Основная цель заключалась в том, чтобы разработать и проверить методику извлечения 
архитектурных зависимостей с помощью локально работающей большой языковой модели. 
Такая модель должна работать без подключения к облачным сервисам, что делает её примене-
ние более доступным и безопасным в реальных условиях. Задача исследования заключалась не 
только в технической проверке способности модели анализировать код, но и в оценке точно-
сти, которой можно достичь при использовании подобного подхода.

Были определены три ключевых задачи. Первая состояла в разработке процедуры анализа 
исходного кода, включающей разбиение файлов на удобные для обработки моделью фрагмен-
ты, подготовки соответствующих запросов и получения структурированных JSON-ответов. 
Вторая задача включала построение графа взаимодействий сервисов. Требовалось не только 
собрать все выявленные моделью связи, но и корректно сгруппировать, нормализовать и ви-
зуализировать их, чтобы получить читабельное представление архитектуры. Третья задача за-
ключалась в оценке точности полученного графа путём сравнения с эталонной архитектурой, 
которую можно восстановить из официальной документации проекта.

Таким образом, эксперимент на microservices-demo позволял не только проверить работу 
самого алгоритма, но и сравнить потенциал LLM-подхода с традиционными методами. Про-
ект был выбран как подходящая тестовая площадка, позволяющая исследовать преимущества 
и ограничения семантического анализа кода с применением современных языковых моделей.

3. Методика исследования

Методика исследования была построена так, чтобы обеспечить последовательную обра-
ботку исходного кода и получение корректного графа взаимодействий между микросервиса-
ми. Основная идея заключалась в том, чтобы разбить проект на фрагменты, передать их моде-
ли и затем объединить результаты.

Система анализа включала четыре основных компонента (рис. 1). Первый компонент — мо-
дуль парсинга кода. Он проходил по всем файлам проекта и формировал список источников, 
которые затем разбивались на небольшие фрагменты. Такое разбиение необходимо, потому 
что языковые модели имеют ограничение на длину входного контекста. Использование не-
больших блоков повышало качество анализа и позволило избежать пропуска важных деталей.

Второй компонент — интерфейс взаимодействия с LLM. В эксперименте использовалась 
локальная модель Mistral 7B Instruct [5], запущенная через Ollama. Модель была загружена на 
компьютер с GPU NVIDIA RTX 4060 Ti. Поддержка 8192 токенов контекста позволила анали-
зировать достаточно большие части файлов. Локальный способ работы обеспечил стабильное 
время ответа и отсутствие зависимости от облачных сервисов.

Третий компонент — интерпретатор ответов модели. Для каждого фрагмента формировал-
ся специальный промпт, в котором указывалось, что необходимо определить взаимодействия 
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между сервисами. Модель должна была вернуть результат строго в формате JSON, где описы-
вались источник, цель, тип связи и короткий фрагмент кода, подтверждающий её вывод. Если 
модель не находила зависимостей, она должна была вернуть пустой список. Это требование 
позволило упростить автоматическую обработку данных.

Ниже приведён пример промпта:
«You are an expert in microservice architecture.
Analyze the provided code fragment and extract INTER-SERVICE interactions that belong to the 

Google microservices-demo.
Return ONLY JSON (no text), as a list of edges. Each edge:
– source: service name (one of: {services})
– target: service name (one of: {services})
– type: one of [«http»,»grpc»,»pubsub»,»tcp»,»other»]
– evidence: list of short code snippets or line hints from the fragment
If you are not sure or the fragment has no interactions, return [].
Code fragment (UTF-8): {code}»
Четвёртый компонент отвечал за объединение результатов и построение графа. Все 

JSON-ответы сохранялись в файл, после чего проходили этап сортировки и фильтрации. Ду-
бликаты удалялись, ошибки исправлялись, а связи приводились к единому формату. Затем 
данные передавались в модуль визуализации, где строился ориентированный граф. Узлы гра-
фа соответствовали микросервисам, а рёбра отражали типы и направления взаимодействий. 
Для визуализации использовалась библиотека NetworkX.

4. Реализация эксперимента

Эксперимент проводился на проекте microservices-demo, который содержит несколько ми-
кросервисов и достаточное количество исходного кода для анализа. В процессе работы было 
обработано девять сервисов. Они включали 162 файла общим объёмом более 1,1 миллиона 
строк кода. Такой объём данных позволил проверить, насколько хорошо модель справляется с 
анализом реального проекта.

Файлы разбивались на фрагменты размером около 1500 токенов с перекрытием 100 токе-
нов. Перекрытие помогало избежать ситуаций, когда важная часть кода попадала на границу 
между двумя блоками и могла быть неправильно проанализирована. После разбиения был 
получен 841 фрагмент. Каждый из них подавался в модель Mistral 7B. Модель возвращала 
JSON-ответ, который сохранялся в файл без дополнительной обработки на этом этапе (рис. 2).

Рис. 1. Архитектура системы анализа репозитория
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Среднее время обработки одного блока составляло около 4,2 секунды. Полная обработ-
ка всех фрагментов заняла чуть меньше часа. По завершении анализа все JSON-ответы были 
объединены, и дублирующиеся связи удалены. В результате был сформирован итоговый граф, 
отражающий взаимодействия между сервисами.

Полученный граф показал несколько ожидаемых связей, характерных для проекта. На-
пример, модель определила обращение сервиса frontend к productcatalogservice и cartservice с 
использованием HTTP. Также были восстановлены связи checkoutservice → paymentservice по 
gRPC, recommendationservice → productcatalogservice по HTTP и cartservice → redis по TCP. Эти 
результаты хорошо совпали с теми, что описаны в документации проекта.

5. Оценка результатов эксперимента

Качество извлечённых связей оценивалось с помощью сравнения результатов анализа с 
официальной документацией проекта. Для этого был создан список ожидаемых взаимодей-
ствий между сервисами, после чего сравнивались связи, выявленные моделью.

Всего было обнаружено 122 уникальных связи (рис. 3). Из них 103 полностью соответство-
вали реальным. 10 связей были ложноположительными, то есть модель ошибочно определила 
взаимодействия, которых в проекте нет. Ещё 9 связей оказались частично корректными: мо-
дель определила направление зависимости, но ошиблась в типе взаимодействия либо неверно 
указала подтверждающий код.

Итоговая точность составила 84,6 %. Это достаточно высокий результат для анализа, вы-
полняемого на основе исходного кода без использования данных трассировки. Модель смогла 
восстановить большую часть архитектуры, включая некоторые косвенные связи, которые не 

Рис. 2. Диаграмма процесса анализа репозитория
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указаны в явном виде в документации. Это говорит о том, что LLM способна учитывать кон-
текст кода и делать выводы по сочетанию нескольких косвенных признаков.

Однако эксперимент также выявил ограничения. В некоторых случаях модель анализиро-
вала вспомогательные файлы, например main.go или тестовые файлы, и ошибочно определяла 
связи на основании их содержания. Это приводило к ложным выводам, особенно в тех ситуа-
циях, когда код содержал абстракции, похожие на реальные сетевые вызовы.

Несмотря на это, результаты показывают, что метод подходит для предварительного ана-
лиза архитектуры и может использоваться в ситуациях, когда запуск системы невозможен или 
затруднён. Он подходит как для реверс-инжиниринга, так и для автоматического формирова-
ния документации.

Заключение

В статье представлена методика автоматического извлечения архитектурных взаимодей-
ствий микросервисов с помощью локальной LLM.

Результаты эксперимента показали, что даже при ограниченном объёме контекста модель 
способна корректно восстанавливать до 85 % связей, подтверждённых документацией.

Использование открытых моделей (например, Mistral 7B) позволяет выполнять подобный 
анализ на локальных машинах, что особенно актуально для компаний с повышенными требо-
ваниями к безопасности.

Рис. 3. Полученный граф зависимостей микросервисов
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АНАЛИЗ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ 
ПО ВВЕДЕНИЮ ПРИКОРМА И МОНИТОРИНГА ПИЩЕВОЙ АЛЛЕРГИИ У ДЕТЕЙ

Воронежский государственный университет

Е. В. Ещенко

Аннотация. В статье рассматриваются современные интеллектуальные системы под-
держки принятия решений, применяемые для введения прикорма и мониторинга пище-
вой аллергии у детей. Анализируются существующие цифровые решения, их функцио-
нальные возможности, подходы к персонализации рекомендаций и методы фиксации 
реакций на продукты. Отдельное внимание уделено преимуществам таких систем, а так-
же их текущим ограничениям. По результатам анализа формулируются требования к бо-
лее эффективным интеллектуальным сервисам и направления их дальнейшего развития.
Ключевые слова: интеллектуальные информационные системы, введение прикорма де-
тям, мониторинг пищевой аллергии, цифровые медицинские системы, персональные ре-
комендации по питанию, анализ пищевых реакций, отслеживание симптомов, дневник 
прикорма, дневник питания, система поддержки принятия решений.

Введение

Введение прикорма и своевременное выявление пищевой аллергии являются важными 
аспектами детского здоровья, требующими системного подхода и индивидуальных рекомен-
даций. Рост популярности мобильных приложений и цифровых сервисов способствует разви-
тию интеллектуальных систем, позволяющих автоматизировать сбор данных, отслеживание 
реакций и формирование персонализированных рекомендаций. 

Согласно рекомендациям ВОЗ [1], оптимальным временем начала введения прикорма яв-
ляется возраст около 6 месяцев, так как к этому времени потребности ребёнка в энергии и 
микроэлементах уже превышают возможности исключительно грудного молока. Согласно 
Национальной программе оптимизации вскармливания детей первого года жизни в Россий-
ской Федерации [2] в контексте современных представлений об оптимальном формировании 
пищевой толерантности введение продуктов прикорма целесообразно в возрасте не ранее 4 и 
не позже 6 месясев. У детей с пищевой аллергией так же рекомендуется ориентироваться на 
эти сроки. Однако в каждом конкретном случае вопрос о времени введения прикорма решает-
ся индивидуально. При этом важны факторы безопасности: питание должно быть адекватным 
и безопасным, прикорм должен вводиться постепенно и в определенном порядке [3, 4].

В то же время риск пищевой аллергии у детей является серьёзной проблемой. Рекомен-
дации по введению прикорма детям с возможной аллергической предрасположенностью во 
многом совпадают с таковыми для здоровых детей, однако особенно важно внимательно от-
слеживать реакции на новые продукты. Случаи аллергии на коровье молоко, яйца, орехи и 
другие продукты требуют более тщательного подхода и документирования через дневники 
питания и систематическое наблюдение [5].

С развитием цифровых технологий появляются интеллектуальные системы поддержки 
принятия решений (СППР), которые могут помочь родителям и медицинским работникам 
в процессе введения прикорма и мониторинга аллергий. Эти системы способны собирать дан-
ные о рационе, фиксировать симптомы и генерировать персонализированные рекомендации, 
используя алгоритмы машинного обучения либо экспертные правила [6]. Применение таких 
решений повышает безопасность, быстроту реакции и точность рекомендаций — особенно 
в случаях, когда ребёнок показывает признаки аллергии или входит в группу риска.
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Тем не менее, несмотря на растущий интерес к цифровым медицинским сервисам, анализ 
показывает, что большинство существующих приложений для родителей являются преиму-
щественно дневниками питания без интеллектуальной обработки данных. На сегодня рас-
пространены решения, не использующие сложные алгоритмы прогнозирования аллергии, что 
ограничивает их эффективность для задач поддержки клинически значимых решений. 

В связи с этим важным направлением исследований является разработка интеллектуаль-
ных систем, которые будут интегрировать сбор данных, классификацию аллергенных рисков 
и предоставлять адаптивные рекомендации для конкретного ребенка.

1. Анализ существующих решений

Современный рынок цифровых приложений, связанных с прикормом и мониторингом 
пищевой аллергии, достаточно разнообразен, однако большинство представленных решений 
можно условно разделить на три крупные категории. Такой подход позволяет структуриро-
ванно оценить текущее состояние технологий, выявить их сильные стороны и определить не-
достатки, которые в совокупности формируют нишу для разработки более интеллектуальных 
систем поддержки принятия решений (СППР).

1.1. Базовые дневники питания и прикорма

Наиболее распространённую группу составляют универсальные дневники для родителей, 
включающие функции записи кормлений, сна, роста и других бытовых параметров ребён-
ка. Эти приложения не фокусируются именно на аллергии или анализе данных; их основная 
цель — предоставить удобный инструмент для ведения ежедневных записей.

В качестве примеров таких приложений следует выделить:
– Baby Daybook — популярный дневник, позволяющий фиксировать кормления, прикорм, 

сон, настроение, рост и вес [7].
– Sprout Baby — приложение с календарём развития и модулем ввода прикорма ребенка [8].
– The Baby Owner — дневник с фокусом на фиксации любых событий ребенка.
– BabyBear: Дневник малыша — российское приложение с удобной фиксацией введённых 

продуктов и возможностью отмечать реакции [9].
Большинство подобных приложений обладают следующим функционалом:
– запись введённых продуктов (дата, количество, заметки);
– общий дневник ухода за ребёнком;
– напоминания о кормлениях и прикормах;
– базовые графики и отчёты;
– встроенные статьи по прикорму (без персонализации, общеобразовательные).
В качестве преимуществ таких приложений можно выделить следующее:
– простота и доступность — низкий порог входа;
– существование бесплатных версий;
– удобство в виде замены классических бумажных дневников;
– обширная функциональность с советами по уходу за ребёнком.
Однако у таких систем можно найти достаточно много недостатков:
– отсутствие алгоритмов анализа данных;
– общие рекомендации предоставляются без персонализации под конкретного ребенка;
– система служит только хранилищем данных, не давая помощи в принятии решений;
– непригодность для задач диагностики аллергии.
Эти приложения удобны в качестве дневника записей, но не решают задачи обнаружения за-

кономерностей между введёнными продуктами и возникающими реакциями. В условиях повы-
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шенного риска пищевой аллергии такая аналитическая составляющая является принципиально 
важной, поскольку именно она позволяет своевременно выявить потенциальные триггеры и подо-
брать безопасные альтернативы. Отсутствие автоматизированного анализа приводит к тому, что 
родителям приходится самостоятельно сопоставлять большое количество данных, что затрудняет 
принятие решений и повышает вероятность неверной интерпретации симптомов. Кроме того, та-
кие системы не предлагают инструментов для прогнозирования возможных нежелательных ре-
акций при введении новых продуктов, что ограничивает их клиническую полезность и снижает 
информативность в ситуациях, требующих высокой точности и индивидуального подхода.

1.2. Специализированные дневники аллергий и симптомов

Данная группа решений представляет собой более узкоспециализированный класс цифро-
вых инструментов, ориентированных на мониторинг пищевой аллергии и фиксирование сим-
птоматики, возникающей в ответ на введение новых продуктов. В отличие от универсальных 
дневников ухода за ребенком, такие системы обеспечивают расширенные возможности по 
структурированной регистрации клинических проявлений (кожные реакции, гастроинтести-
нальные симптомы, респираторные признаки и т. д.) и привязке их к конкретным пищевым 
триггерам. Однако, несмотря на высокую детализацию данных, большинство подобных при-
ложений ограничивается функциями визуализации и базового учета, не реализуя полноцен-
ные методы интеллектуального анализа данных, что снижает их потенциал как инструментов 
поддержки клинических решений.

Таких систем существует уже меньше, в сравнении с обычными дневниками питания. Рас-
смотрим следующие системы:

– SpoonfulONE — приложение, ориентированное на профилактику аллергии посредством 
регулярного введения аллергенов; включает журнал питания и реакции [10].

– MySymptoms Food Diary — продвинутый дневник, который имеет богатый функционал 
по анализу аллергий и реакций. Показывает корреляции и ранжирует продукты по силе связи 
на симптом. Однако есть и минусы: анализ основан на статистике, а не на медицинских знани-
ях. Не дает прямых рекомендаций и ответа на вопрос «что делать дальше», только показывает 
связи. Родитель и/или врач должны сами интерпретировать результаты [11].

– Solid — Baby Food Tracker — приложение, которое позволяет отмечать продукты и сим-
птомы аллергий и другие реакции, но не предоставляет алгоритмы анализа.

– Allergy Amulet — мобильное приложение включает дневник реакций и журнал тригге-
ров, однако основной продукт представляет собой носимый датчик для выявления аллерге-
нов. Приложение предоставляет дополнительный функционал [12].

– Food Allergy Institute (FAI) Tracker — специализированный инструмент, используемый 
некоторыми клиникам. Имеет фиксацию побочных реакций по шкале тяжести. В качестве ми-
нусов можно отметить, что не является массовым потребительским продуктом.

У систем такого типа обычно присутствует следующий функционал:
– детальная запись симптомов (сыпь, зуд, отёк, рвота, изменения стула);
– привязка симптомов к конкретным продуктам;
– визуализация реакций (календарь, хроника);
– генерирование отчётов для медицинского специалиста;
– добавление фотографий проявлений аллергии.
В качестве преимуществ таких систем можно выделить следующее:
– предоставление высокой точности и детализации по аллергическим симптомам;
– предоставление информации в структурном виде, в том числе предоставлении информа-

ции в более удобном виде для медицинских работников (графики, диаграммы и т. п.);
– формирование у родителей и медицинского персонала понимания связи между продук-

тами и реакциями детей на введённые продукты.
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Однако такие системы зачастую не лишены недостатков:
– отсутствие механизмов прогнозирования новых реакций;
– необходимость самостоятельного анализа данных со стороны родителя или врача;
– отсутствие алгоритмов выявления скрытых закономерностей;
– ограниченность некоторых модулей для использования самими родителями без помощи 

медицинских работников.
Таким образом, специализированные дневники аллергии и симптомов занимают проме-

жуточное положение между базовыми бытовыми дневниками питания и интеллектуальными 
системами поддержки принятия решений. Они обеспечивают высокую детализацию данных, 
связанную с динамикой аллергических проявлений и создают структурированную основу для 
последующего клинического анализа. Однако их функциональные возможности остаются 
ограниченными преимущественно регистрацией и визуализацией информации. Несмотря на 
расширенный набор параметров и ориентированность на значимые события, эти приложе-
ния, как правило, не осуществляют глубокой аналитической обработки, не выполняют авто-
матического выявления причинно-следственных связей и не формируют персонализирован-
ных рекомендаций для конкретного ребенка. 

1.3. Интеллектуальные коммерческие системы с элементами поддержки принятия решений

Наиболее инновационным, но пока наименее распространённым сегментом цифровых 
решений являются системы с элементами экспертных методов и машинного обучения. Эти 
решения направлены не только на аккумулирование данных, но и на их систематическую ин-
терпретацию, прогнозирование рисков аллергических реакций и формирование персонали-
зированных рекомендаций по введению прикорма. 

Далеко не все такие системы являются коммерческими продуктами, многие являются ис-
следовательскими или используются на базе конкретных клиник. 

Рассмотрим существующие коммерческие продукты:
– Nurturey (Nurturey PinkBook) — попытка создать целостную цифровую экосистему, ис-

пользование элементов ИИ для анализа симптомов, однако система не специализирована на 
детском питании и аллергии, а базируется на здоровье ребенка в целом.

– NALA Health («ABOARD» — AI-driven Platform) — научный проект, направленный на 
разработку интеллектуальной платформы для пациентов с атопическим дерматитом и пи-
щевой аллергией. Функционал достаточно богатый, используется компьютерное зрение для 
анализа кожных проявлений и тяжести атопического дерматита; имеет дневник питания и 
симптомов; использует алгоритмы машинного обучения для прогнозирования вспышек дер-
матита; имеет функционал генерации отчетов для медицинского персонала [13].

– AllergySpot — ИИ приложение для отслеживания пищевых реакций и вычисления пат-
тернов по схеме «три дня до симптома, потом реакция» [14].

Коммерческие интеллектуальные системы пока немногочисленны, однако есть интересные 
варианты, и они уже показывают потенциал ИИ в мониторинге аллергий и поддержке ре-
шений. Их появление подчёркивает необходимость разработки более специализированных и 
клинически ориентированных инструментов.

1.4. Интеллектуальные научные системы с элементами поддержки принятия решений

В качестве примеров различных научных систем можно выделить:
– Мультиагентные системы: моделирование процесса введения прикорма через взаимо-

действие «агентов» — «Агент-аллерголог», «Агент-педиатр», «Агент-данные», совместно фор-
мирующих рекомендации.
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– Исследования по СППР в детской аллергологии [4].
– Специальные модули телемедицинских платформ, предоставляющие рекомендации на 

основе анализа истории пациента.
– Академические исследовательские системы, использующие ассоциативные правила, 

байесовские сети или классификаторы для оценки пищевых рисков.
– Системы на основе онтологий и экспертных правил.
Такие системы обычно предоставляют достаточно обширные функциональные возможно-

сти, среди которых можно выделить:
– алгоритмический анализ с выявлением закономерностей «продукт   реакция»;
– прогнозирование вероятности реакции на новые продукты;
– генерация персонализированных рекомендаций по следующему продукту прикорма;
– использование экспертной базы знаний, основанной на рекомендациях Союза педиатров 

России, Всемирной Организации Здравоохранения и современных научных источниках;
– адаптивное изменение плана введения прикорма в зависимости от истории наблюдений 

и реакции ребёнка.
Данные системы имеют ряд преимуществ по сравнению с классическими приложениями, 

которыми являются дневники введенных продуктов, симптомов и аллергенов:
– высокий уровень персонализации и адаптивности рекомендаций;
– способность выявлять сложные зависимости, незаметные при ручной обработке данных;
– возможность предупреждения развития аллергии и оптимизации стратегии прикорма;
– научная обоснованность на базе проверенных моделей и протоколов.
Однако зачастую данные системы довольно сложны и недоступны широкому кругу потре-

бителей. В связи с этим, можно выделить ряд недостатков и ограничений:
– ограниченная доступность, так как большинство систем остаются прототипами;
– редкая интеграция в массовую практику здравоохранения;
– необходимость накопления значительных объёмов данных для корректного анализа;
– сложность интерпретации алгоритмов для родителей без специальной подготовки.
В качестве вывода по данным система можно сказать, что данная категория интеллекту-

альных систем с элементами СППР представляет собой наиболее перспективное направление 
развития цифровых решений в области прикорма и мониторинга пищевой аллергии. Несмо-
тря на потенциал повышения точности, безопасности и персонализации рекомендаций, на 
текущий момент данные решения остаются узконаправленными, ограниченными исследова-
тельскими прототипами или интегрированными только в специализированные медицинские 
платформы, что подчёркивает необходимость дальнейших разработок и внедрений.

2. Сравнительный анализ существующих типов систем

Для наглядного сопоставления рассмотренных категорий цифровых решений по введению 
прикорма и мониторингу пищевой аллергии проведён сравнительный анализ их функцио-
нальных возможностей, интеллектуальной поддержки и степени персонализации. 

В табл.1 представлены ключевые критерии, отражающие различия между базовыми днев-
никами ухода за ребёнком, специализированными дневниками аллергии и симптомов, а также 
интеллектуальными системами поддержки принятия решений (СППР), включая коммерче-
ские и исследовательские прототипы.

На основе представленных в табл.1 данных была построена диаграмма (рис. 1), наглядно 
демонстрирующая распределение ключевых показателей и взаимосвязи между ними. Данный 
графический анализ позволяет более наглядно оценить тенденции и выявить закономерности, 
которые трудно уловить при простом просмотре числовых значений.
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Таблица 1
Критерий Базовые дневники 

питания
Специализированные 

дневники аллергий
Интеллектуальные 

СППР 
Основная функция Трекинг ухода 

за ребенком 
и питания

Фиксация симптомов 
и связь с продуктами, 
визуализация корреляций

Алгоритмический анализ 
данных, прогнозирование 
рисков, 
персонализированные 
рекомендации

Интеллектуальный 
анализ

Отсутствует Минимальный 
(визуализация, базовая 
статистика)

Высокий (машинное 
обучение, экспертные 
правила, онтологии)

Персонализация 
рекомендаций

Отсутствует Отсутствует Как правило, присутствует, 
на основе истории 
ребенка и данных 
наблюдений

Фиксация реакций 
(симптомы)

Базовая (общее 
описание, заметки)

Детальная (сыпь, зуд, отёк, 
рвота, фото)

Детальная и связанная 
с алгоритмами, с оценкой 
риска и приоритетов

Прогнозирование 
рисков

Отсутствует Отсутствует Может присутствовать, 
для оценки вероятности 
реакции на новые 
продукты

Интеграция 
медицинских 
знаний

Общие статьи 
по прикорму и уходу

Частичная (статьи 
и протоколы по аллергии)

Полная (экспертные базы 
союза педиатров РФ, ВОЗ, 
правила и модели СППР)

Польза для врача Низкая (данные 
неструктурированные, 
трудны для анализа)

Средняя (можно сгене-
рировать отчет и увидеть 
корреляции)

Высокая 
(структурированные 
данные, прогнозы, 
рекомендации для 
клинициста)

Основное 
преимущество

Удобство, 
универсальность, 
доступность

Фокус на аллергии 
и высокая детализация 
симптомов

Поддержка принятия 
решений, 
персонализированные 
рекомендации, аналитика

Основной 
недостаток

Нет интеллектуального 
анализа, только 
фиксация данных

Нет прогнозирования 
и автоматических 
рекомендаций

Ограниченная 
доступность, сложность 
интерпретации, требует 
данных и подготовки 
пользователей

Доступность 
и аудитория

Массовые 
пользователи, 
родители

Ограниченный круг, 
родители детей 
с аллергией, клиники

В основном 
исследовательские 
прототипы, 
профессиональные 
медицинские платформы

Примеры 
приложений 
и систем

Baby Daybook, Sprout 
Baby, The Baby Owner, 
BabyBear: дневник 
малыша

SpoonfulONE, 
MySymptoms, Solid, 
Allergy Amulet, Food 
Allergy Institute Tracker

Nurturey PinkBook, NALA 
Health, мультиагентные 
прототипы, СППР 
научных исследований
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Заключение

Проведённый анализ существующих цифровых решений в области введения прикорма и 
мониторинга пищевой аллергии демонстрирует существенный разрыв между широкодоступ-
ными потребительскими приложениями и уровнем интеллектуальности, который необходим 
для поддержки клинически значимых решений. Основной рынок сегодня представлен базо-
выми дневниками ухода за ребёнком и специализированными дневниками аллергии, которые, 
несмотря на удобство использования и высокую детализацию данных, по сути, остаются ин-
струментами фиксации событий. Они не позволяют автоматически выявлять причинно-след-
ственные связи между продуктами и реакциями на них, не обладают механизмами прогнози-
рования новых рисков и не формируют персонализированных рекомендаций.

На фоне этого интеллектуальные системы с элементами машинного обучения и эксперт-
ных правил представляют собой наиболее перспективное направление развития, однако такие 
решения находятся преимущественно на стадии исследовательских прототипов или интегри-
рованы в узкоспециализированные клинические платформы. Коммерческих продуктов, спо-
собных обеспечить глубокий анализ, персонализацию плана прикорма и прогнозирование ал-
лергических рисков, чрезвычайно мало. Это подчёркивает высокую актуальность разработки 
комплексной системы, ориентированной на индивидуальные особенности ребёнка, историю 
введённых продуктов и динамику симптомов.

Создание подобной системы позволило бы не только улучшить безопасность процесса вве-
дения прикорма, но и повысить качество медицинского сопровождения, предоставляя роди-
телям и врачам аналитически обоснованные рекомендации по выбору следующего продукта, 
его дозировке и возможным альтернативам. Кроме того, использование современных методов 
машинного обучения открывает возможности раннего выявления паттернов, предшествую-
щих аллергическим реакциям, и формирования превентивных стратегий питания.

В рамках дальнейших этапов исследования планируется рассмотреть архитектуру воз-
можной интеллектуальной системы, определить набор необходимых данных, формализовать 

Рис. 1. Визуальная сравнительная характеристика цифровых решений по прикорму 
и мониторингу пищевой аллергии у детей
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клинические правила и оценить потенциал применения прогностических алгоритмов. Таким 
образом, разработка СППР на базе экспертных правил и машинного обучения может стать 
значимым вкладом в область цифровой педиатрии и обеспечить качественно новый уровень 
персонализации при введении прикорма и мониторинге пищевой аллергии.
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АНАЛИЗ И КЛАССИФИКАЦИЯ КАРДИОЛОГИЧЕСКИХ ПАТОЛОГИЙ ПО ДАННЫМ 
12-КАНАЛЬНОЙ ЭКГ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ

Воронежский государственный университет

И. И. Жмурко

Аннотация. Сердечно-сосудистые заболевания остаются ведущей причиной смертности 
в мире, а электрокардиография — стандартным методом диагностики кардиологических 
патологий. Ручная интерпретация ЭКГ требует высокой квалификации и остаётся субъ-
ективной, особенно в сложных случаях. Разработка автоматических методов на основе 
машинного обучения актуальна для повышения эффективности диагностики и доступ-
ности кардиологической помощи. В работе сравниваются классические методы (Random 
Forest) и рекуррентные нейронные сети (Bidirectional LSTM) для задачи классификации 
мультилейбл патологий на ЭКГ с учётом дисбаланса классов. Полученные результаты по-
зволяют выявить ограничения текущих подходов и обосновать необходимость дальней-
шего изучения более современных архитектур.
Ключевые слова: электрокардиография, классификация патологий, мультилейбл обуче-
ние, глубокое обучение, Random Forest, LSTM, машинное обучение, кардиология, дисба-
ланс классов, медицинская диагностика, 12-канальная ЭКГ.

Введение

Заболевания сердечно-сосудистой системы (ССЗ) остаются ведущей причиной смертно-
сти в мире, унося примерно 19.8 млн жизней ежегодно[1]. Электрокардиография (ЭКГ) — 
стандартный неинвазивный метод диагностики, используемый при первичном обследовании, 
скрининге и мониторировании. Однако традиционная интерпретация ЭКГ требует опыта 
и остаётся субъективной. Дефицит кардиологических специалистов в отдаленных регионах 
делает ручную интерпретацию неприемлемо медленной для массового профилактического 
обследования. В последнее десятилетие машинное обучение активно применяется в меди-
цинской диагностике [2]. Для анализа ЭКГ используются как классические методы (Random 
Forest, SVM), так и архитектуры глубокого обучения (CNN, RNN, LSTM)[3]. Каждый метод 
имеет ограничения: Random Forest не учитывает временную структуру, CNN работает лучше 
на коротких паттернах, LSTM обрабатывают последовательность пошагово (затрудняя парал-
лелизацию и захватывание долгосрочных зависимостей при 5000+ отсчётах в ЭКГ) и лишены 
встроенной интерпретируемости. Трансформеры и архитектуры на основе самовнимания по-
казали превосходство над LSTM на задачах обработки последовательностей благодаря парал-
лельной обработке, лучшему захватыванию долгосрочных зависимостей и встроенной интер-
претируемости через attention weights[4]. Однако классификация кардиологических патологий 
осложнена мультилейбл природой (каждая ЭКГ может содержать несколько диагнозов) и вы-
раженным дисбалансом классов (одни патологии в 1000+ примерах, другие в 1-2 примерах). 
Цель работы — исследовать и сравнить классические методы (Random Forest) и рекуррентные 
нейронные сети (Bidirectional LSTM) для классификации ЭКГ в условиях мультилейбл задачи 
и выраженного дисбаланса классов с полным проведением обработки данных, анализом про-
изводительности моделей и выявлением ограничений LSTM для обоснования необходимости 
применения трансформеров.
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1. Исходные данные и описание задачи

Исследование базируется на датасете PTB-XL[5] — публичном архиве кардиологических 
данных, содержащем 12-канальные ЭКГ записи пациентов. Для исследования из полного дата-
сета выбраны записи с 2100+ пациентов. Каждая запись включает 12-канальные ЭКГ сигналы 
(отведения: I, II, III, aVR, aVL, aVF, V1-V6), каждый канал содержит 5000 отсчётов в форма-
те NumPy. Целевые переменные представлены как список индексов патологий в мультилейбл 
формате. Датасет содержит 73 уникальных кардиологических диагноза, при этом среднее чис-
ло диагнозов на пациента — 3.29 (диапазон 1-8). Из полного набора признаков PTB-XL (вклю-
чающего возраст, пол, рост, вес, SCP-коды и другие клинические параметры) для этого иссле-
дования оставлены признаки: демографические данные (возраст, пол, рост, вес), SCP-коды и 
категория электрической оси сердца (heart axis). Датасет разделён на 10 стратифицированных 
фолдов кросс-валидации. Часть исходных данных показана в табл. 1.

Таблица 1
Фрагмент исходных данных

patient id filename labels age height weight sex strat 
fold scp-codes heart 

axis
18792 00009_hr [37, 54] 55 NaN 70.0 0 10 {‘NORM’: 100.0, ‘SR’: 0.0} None
13619 00034_hr [37, 58] 56 NaN NaN 0 9 {‘AFLT’: 100.0} None
11315 00043_hr [22, 37] 25 NaN 63.0 1 8 {‘NORM’: 100.0, ‘SR’: 0.0} None
18153 00052_hr [1, 37, 54] 35 NaN 82.0 0 1 {‘IRBBB’: 100.0, ‘SR’: 0.0} None
16063 00057_hr [37, 54] 26 NaN 93.0 0 10 {‘NORM’: 100.0, ‘SR’: 0.0} None

2. Разведочный анализ данных

2.1. Демографический профиль и антропометрические характеристики

Датасет содержит записи пациентов среднего и старшего возраста со средним возрастом 
62 ± 15 лет и медианой 61 год, что соответствует группе с повышенным риском сердечно-сосу-
дистых заболеваний. Диапазон возрастов варьируется от 0 до 120+ лет, однако значения выше 
120 лет являются очевидными ошибками ввода (рис. 1). По половому признаку датасет хоро-
шо сбалансирован: 52.1 % мужчин и 47.9 % женщин, что важно для объективного анализа кар-
диологических данных. Распределение по возрастным группам показывает, что более полови-
ны пациентов — люди старше 60 лет, что логично для кардиологического датасета и отражает 
типичную демографическую структуру пациентов с сердечно-сосудистыми заболеваниями. 

Рис. 1. Точечная диаграмма и гистограмма возраста (с аномалиями > 120)
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Что касается антропометрических данных, то показатели роста и веса содержат значитель-
ное количество пропусков — приблизительно 50 % каждый. Несмотря на это, на полных дан-
ных наблюдается умеренная положительная корреляция между ростом и весом с коэффици-
ентом корреляции Пирсона 0.612r = . Средний индекс массы тела (BMI) составляет 25.18 — по 
классификации ВОЗ это «избыточная масса тела» (рис. 2), что характерно для пациентов с 
кардиопатологией и указывает на распространённость превышения нормы веса в данной 
группе.

2.2. Анализ целевых переменных и клинических параметров

Анализ целевых переменных выявил, что среднее число диагнозов на пациента составляет 
3.29, с диапазоном от 1 до 8 диагнозов. Большинство пациентов (более 60 %) имеют 3–4 диа-
гноза одновременно, что отражает реальность клинической практики, где кардиологические 
патологии часто сопутствуют друг другу и развиваются из общих факторов риска. Однако да-
тасет страдает от выраженного дисбаланса классов: топ-2 патологии встречаются в более чем 
1200 примерах каждая, в то время как более половины диагнозов представлены менее чем 50 
примерами (рис. 3). Это создаёт серьёзную проблему при обучении моделей, поскольку стан-
дартные алгоритмы будут смещены в сторону частых классов и практически не смогут обу-
читься на редких примерах.

Рис. 2. Распределение BMI

Рис. 3. Распределение количества диагнозов
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Дополнительно следует отметить, что при интерпретации ЭКГ кардиологи используют 
SCP-коды, каждому из которых присваивается балл уверенности от 0 до 100. Медиана уве-
ренности составляет 35, среднее значение — 46.5, что свидетельствует о большой доле погра-
ничных и сложных клинических случаев, характерных для реальной практики. Анализ элек-
трической оси сердца (heart_axis) показал следующее распределение: промежуточная позиция 
(норма) — 34.5 %, отклонение влево — 16.8 %, выраженное отклонение влево — 5.6 %; осталь-
ные категории — менее 2 % каждая.

2.3. Взаимосвязи между диагнозами

Наконец, анализ взаимосвязей между диагнозами выявил важные клинические паттерны. 
Матрица корреляции выявила группы патологий, часто встречающихся совместно. Напри-
мер, высокая корреляция между метками «Блокада передней ветви левой ножки п. Гиса» и 
«Отклонение электрической оси влево» ( 0.593)r =  указывает на общий кардиологический 
синдром. Аналогично, связь между «Неопределённой ЭОС» и «ЭКГ типа SI–SII–SIII, анализ 
положения ЭОС не проводится» ( 0.416)r =  отражает технически взаимосвязанные особен-
ности интерпретации сигнала. На рис. 4 именно эти пары патологий с наивысшими значения-
ми положительной корреляции выделены тёмно-зелёным цветом. Матрица совместной встре-
чаемости подтвердила наиболее частые сочетания: метки «Нормальное положение ЭОС» и 
«Синусовый ритм» встречаются вместе 718 раз, что указывает на клинически ассоциирован-
ные состояния.

С другой стороны, обнаружено 1484 пары взаимоисключающих диагнозов, что обуслов-
лено медицинской несовместимостью. Например, нормальное положение электрической оси 
сердца не может сочетаться с её отклонениями, а различные типы сердечных ритмов физиче-
ски не могут присутствовать одновременно. Эти закономерности имеют практическое зна-
чение: они позволяют проверять корректность предсказаний моделей, предотвращать меди-
цинские невозможные комбинации диагнозов и лучше понимать структуру кардиологических 
заболеваний.

Рис. 4. Матрица корреляции между диагнозами
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3. Методология

3.1. Предобработка данных

Реальные медицинские датасеты требуют тщательной предобработки. Значения возрас-
та > 120 лет заменены на медиану (61 год) для устойчивости к выбросам. Пропуски в признаках 
height и weight заполнены медианными значениями. Для каждого пациента рассчитан индекс 
массы тела (BMI) путём деления веса (в кг) на квадрат роста (в м). SCP-коды, хранящиеся как 
JSON-словарь, распакованы с помощью pd.json_normalize(), каждый уникальный код преоб-
разован в отдельный числовой признак со значением баллов уверенности кардиолога. Пере-
менная heart_axis закодирована в 8 бинарных столбцов с использованием one-hot encoding, а 
пропущенные значения заполнены категорией ‘UNKNOWN’. Результат: исходные 10 признаков 
расширены до 100+ признаков после кодирования (схема процесса показана на рис. 5). 

Для нейросетевых моделей применена z score−  нормализация ЭКГ независимо для каждо-

го канала и образца: norm
xx µ
σ
−

= , где µ  — средняя величина, σ  — стандартное отклонение.

3.2. Архитектуры моделей

Для решения задачи реализованы две модели, позволяющие проследить эволюцию подхо-
дов от классических методов машинного обучения к глубокому обучению.

Первая модель — Random Forest с MultiOutputClassifier (100 деревьев) — служит базовой 
линией для сравнения. На вход подаётся объединение развёрнутых ЭКГ сигналов (60 000 при-
знаков) и табличных данных (~81 признак); для каждого из 73 диагнозов обучается независи-
мый классификатор. Модель проста в реализации и интерпретируется легко, однако полно-
стью игнорирует временную структуру ЭКГ, рассматривая каждый отсчёт как независимый 
признак, что создаёт риск переобучения при такой высокой размерности входных данных.

Вторая модель использует двухветвевую архитектуру: ЭКГ-ветка состоит из двух слоёв 
Bidirectional LSTM (256 и 128 нейронов) с Dropout (0.3 и 0.4), табличная ветка — из одного 
Dense слоя (32 нейрона, ReLU, Dropout 0.2). Обе ветки объединяются через Concatenate, прохо-
дят через Dense слой (64 нейрона) и выходной слой (73 нейрона, Sigmoid). Ключевое преиму-
щество — двунаправленная обработка: модель видит контекст как «вперёд», так и «назад» по 
времени, что критично для интерпретации ЭКГ паттернов (QRS, ST-сегменты). Модель обуча-
ется с Adam и Binary Crossentropy в течение 50 эпох ( _ 32).batch size =  Основные ограничения 
LSTM: последовательная обработка 5000 отсчётов затрудняет параллелизацию, возможна по-
теря долгосрочных зависимостей в длинных последовательностях, и отсутствует встроенная 
интерпретируемость — сложно понять, какие части ЭКГ влияют на предсказание.

Рис. 5. Блок-диаграмма предобработки
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4. Метрики оценки качества

Для оценки производительности моделей в задаче мультилейбл классификации использо-
ваны специализированные метрики, адаптированные к особенностям данной задачи. Полное 
описание метрик и их интерпретация представлены в табл. 2.

Таблица 2
Метрики мультилейбл классификации

Метрика Описание Диапазон
Hamming Loss Доля неправильно предсказанных меток 0-1 (↓  лучше)
Exact Match Ratio % образцов, где ВСЕ метки правильны 0-1 (↑  лучше)
F1-score (micro) Глобальное F1 по всем классам (частые классы имеют 

больший вес)
0-1 (↑  лучше)

F1-score (macro) F1 усреднено по всем классам (все классы имеют равный 
вес)

0-1 (↑  лучше)

Precision (micro)
( )

TP
TP FP+

 глобально 0-1 (↑  лучше)

Recall (micro)
( )

TP
TP FN+

 глобально 0-1 (↑  лучше)

ROC-AUC (micro) Площадь под ROC-кривой 0-1 (↑  лучше)

Использование нескольких метрик необходимо, так как одна метрика не может полностью 
охарактеризовать качество модели в мультилейбл задаче, особенно при дисбалансе классов.

5. Результаты экспериментов

Результаты тестирования представлены в табл. 3.
Таблица 3

Результаты тестирования моделей
Метрика Random Forest Bi-LSTM

Hamming Loss 0.036 0.033
Exact Match Ratio 0.166 0.147
F1 (micro) 0.487 0.546
F1 (macro) 0.032 0.121
Precision (micro) 0.678 0.688
Recall (micro) 0.3797 0.453
ROC-AUC (micro) – 0.887

Заключение

Работа выявила несколько ключевых результатов при анализе кардиологического датасета 
PTB-XL. Датасет содержит реальные клинические данные со всеми присущими сложностями: 
аномалии в возрасте (значения > 120 лет), пропуски в антропометрических характеристиках 
(~50%) и выраженный дисбаланс классов (редкие диагнозы представлены 1–10 примерами, ча-
стые — 1000+ примерами). Важной особенностью задачи является то, что одна ЭКГ может од-
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новременно содержать несколько диагнозов (в среднем 3.29), что требует применения специа-
лизированных метрик для многолейбловой классификации (Hamming Loss, Exact Match Ratio, 
F1-macro/micro) и функций потерь (Binary Crossentropy вместо Categorical Crossentropy). Кро-
ме того, анализ закономерностей выявил 1484 взаимоисключающие пары диагнозов, которые 
никогда не встречаются вместе — например, нормальная электрическая ось сердца не может 
сочетаться с её отклонениями, а различные ритмы не могут присутствовать одновременно. 
Это отражает высокую структурированность медицинских знаний и открывает возможность 
явного учёта таких ограничений при декодировании выходов модели.

В результате экспериментов установлено, что Bidirectional LSTM превосходит Random 
Forest по F1-score (micro) на 5.9 процентных пункта (0.487 → 0.546), что подтверждает преиму-
щество архитектур, учитывающих временную структуру ЭКГ. При этом точность (Precision) 
остаётся высокой у обеих моделей (0.678 → 0.688), в то время как Recall значительно улучшает-
ся (0.3797 → 0.453), что отражает лучшую способность LSTM находить положительные приме-
ры. Вместе с тем, стоит подчеркнуть, что LSTM обладают фундаментальными ограничениями: 
пошаговая обработка 5000-отсчётной последовательности замедляет обучение и затрудняет 
параллелизацию, а также повышается вероятность потери долгосрочных зависимостей по 
мере увеличения длины последовательности, кроме того, модель фактически остаётся «чёр-
ным ящиком» с точки зрения клинической интерпретируемости.

Следует отметить, что дисбаланс меток остаётся критической проблемой: значительное 
расхождение между Micro F1 (0.546) и Macro F1 (0.121) показывает, что редкие диагнозы пред-
сказываются с F1 порядка 0.05–0.12, тогда как частые достигают 0.5 0.6.F ≈ −  Следует также 
отметить, что высокое значение 0.887ROC AUC− =  для LSTM свидетельствует о хорошей 
способности различать патологические и непатологические состояния, однако преимущество 
проявляется преимущественно для часто встречающихся диагнозов.

Исходя из вышеперечисленного, результаты указывают на целесообразность перехода к 
архитектурам на основе механизма самовнимания (трансформерам), которые способны обе-
спечить параллельную обработку всей 5000-отсчётной последовательности, более эффектив-
ное захватывание долгосрочных зависимостей благодаря attention-механизму, а также встро-
енную интерпретируемость через карты attention weights, демонстрирующие, какие фрагменты 
ЭКГ наиболее значимы для каждого диагноза.
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ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В 2025 ГОДУ: 
ТЕНДЕНЦИИ РАЗВИТИЯ И ПЕРСПЕКТИВЫ

Воронежский государственный университет

А. А. Захарова

Аннотация. В статье представлен всесторонний анализ текущего состояния искусствен-
ного интеллекта в 2025 году, рассматриваются последние разработки, тенденции и ре-
зультаты исследований из новейшей академической и отраслевой литературы. Благода-
ря систематическому обзору современных источников в этом исследовании определены 
ключевые достижения в области генеративного ИИ, машинного обучения и внедрение 
ИИ в различных секторах. Анализ показывает значительный прогресс в области интел-
лектуальных возможностей ИИ, более широкого внедрения на предприятиях и возни-
кающих проблем в области управления ИИ и этики. Основные результаты показывают, 
что в настоящее время 78 % организаций используют ИИ. В одной бизнес-функции гене-
ративный ИИ находит широкое практическое применение, поднимая важные вопросы о 
сотрудничестве человека и ИИ и влиянии на общество. В этом всеобъемлющем обзоре 
обобщены выводы из 25 первоисточников, включая рецензируемые статьи, отраслевые 
отчеты и эмпирические исследования, чтобы представить целостное представление о 
траектории развития искусственного интеллекта в 2025 году.
Ключевые слова: Искусственный интеллект, генеративный ИИ, машинное обучение, 
тенденции 2025 года, внедрение ИИ.

Введение

2025 год знаменует собой поворотный момент в развитии искусственного интеллекта, ха-
рактеризующийся быстрым технологическим прогрессом и широким внедрением в различных 
отраслях промышленности [1]. По мере приближения к 2025 году ландшафт искусственного 
интеллекта значительно эволюционировал — от экспериментальных прототипов до готовых 
к производству систем, которые демонстрируют беспрецедентные возможности в области 
мышления, креативности и решения проблем [2]. В этом обзоре литературы рассматривает-
ся текущее состояние исследований и внедрения искусственного интеллекта, анализируются 
последние разработки, возникающие тенденции и растет количество научных и отраслевых 
исследований, которые формируют наше понимание траектории развития ИИ. 

Важность этого анализа заключается в беспрецедентных темпах развития и внедрения ИИ, 
которые будут наблюдаться в 2025 году. В отличие от предыдущих лет, отмеченных постепен-
ным прогрессом, 2025 год ознаменовался прорывными разработками в нескольких областях 
искусственного интеллекта одновременно, от расширенных возможностей логического мыш-
ления до сложных мультимодальных систем [3]. Это сближение технологического прогресса 
с практической реализацией предоставляет уникальную возможность оценить как эффектив-
ность, так и текущие достижения и будущее применение систем искусственного интеллекта.

Мотивация для проведения этого всестороннего обзора обусловлена необходимостью по-
нять, каким образом технологии искусственного интеллекта вышли за рамки эксперименталь-
ных этапов и стали неотъемлемыми компонентами бизнес-процессов, научных исследований 
и использований в повседневной жизни [4]. Быстрое развитие возможностей искусственно-
го интеллекта, особенно в области генеративного искусственного интеллекта и автономных 
систем, требует тщательного изучения современной литературы для выявления тенденций, 
оценки последствий и прогнозирования будущих изменений [5].
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Кроме того, в 2025 году глобальная конкурентная среда в области искусственного интел-
лекта претерпела значительные изменения, последствия которых выходят за рамки техниче-
ских возможностей и охватывают экономические, стратегические и геополитические аспек-
ты [1]. Понимание этой динамики требует систематического анализа различных источников, 
начиная от академических исследований и заканчивая исследованиями по внедрению в про-
мышленности.

1. Справочная информация по обзору литературы

1.1. Эволюция направления исследований в области искусственного интеллекта

Траектория исследований ИИ претерпела существенную эволюцию вплоть до 2025 года. 
Исторический анализ показывает переход от узких приложений, ориентированных на кон-
кретные задачи, к более общим, многоцелевым системам, способным решать сложные, муль-
тимодальные задачи [6]. Эта эволюция была особенно заметна при разработке больших язы-
ковых моделей и систем генеративного ИИ, которые превратились из экспериментальных 
курьезов в практические инструменты с широким спектром применения [7].

Недавняя литература указывает на то, что фокус исследований в области ИИ сместился в 
сторону разработки системы, которые могут интегрировать множество возможностей в уни-
фицированные платформы, которые представляют собой фундаментальное архитектурное 
изменение в дизайне систем искусственного интеллекта [8]. Этот сдвиг отражает растущее 
признание того факта, что наиболее ценные приложения ИИ получаются в результате объе-
динения различных возможностей ИИ, а не изолированной оптимизации отдельных компо-
нентов.

1.2. Методологические подходы в современных исследованиях искусственного интеллекта

Современные исследования ИИ используют все более сложные методологические подхо-
ды, сочетающие теоретические достижения с эмпирической проверкой [9]. В литературе от-
мечается растущий акцент на воспроизводимости, сравнительном анализе и систематической 
оценке систем ИИ по нескольким параметрам, включая производительность, безопасность и 
влияние на общество [10].

Методологии исследований также эволюционировали для решения уникальных задач, свя-
занных с генеративными системами искусственного интеллекта, включая разработку новых 
систем оценки, которые могут оценивать творческий подход, фактическую точность и воз-
можность неправильного использования. Эти методологические инновации имеют решающее 
значение для поддержания научной строгости в быстро развивающейся области, где традици-
онные подходы к оценке могут оказаться недостаточными.

2. Текущее состояние технологий искусственного интеллекта в 2025 году

2.1. Достижения в области искусственного интеллекта

Наиболее значительным достижением в области технологий искусственного интеллекта в 
2025 году стало продолжающееся развитие систем генеративного искусственного интеллекта 
[8]. Недавние исследования показывают, что генеративный ИИ вышел за рамки эксперимен-
тальных приложений и стал неотъемлемой частью бизнес-процессов. Интеграция множества 
возможностей искусственного интеллекта в унифицированные системы представляет собой 
серьезный архитектурный сдвиг, а такие разработки, как ожидаемая система GPT-5, призваны 
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объединить логику, мультимодальность и понимание долгосрочного контекста в единую, бо-
лее функциональную платформу [7].

Исследование, опубликованное в 2025 году, демонстрирует, что генеративные системы ис-
кусственного интеллекта достигли значительных улучшений производительности во многих 
областях [8]. Исследования показывают, что реакции, генерируемые искусственным интел-
лектом, в определенных контекстах воспринимаются как более чуткие и заботливые, чем ре-
акции человека, что указывает на значительный прогресс в понимании естественного языка и 
возможностях генерации информации [9]. Эта разработка имеет серьезные последствия для 
приложений в сфере обслуживания клиентов, здравоохранения и образования.

В литературе показано, что генеративный ИИ добился особых успехов в творческом при-
ложения, а системы теперь способны создавать высококачественный контент в различных 
форматах, включая текст, изображения, аудио и видео. Эти возможности позволили создать 
новые формы сотрудничества человека и искусственного интеллекта и начали трансформиро-
вать различные отрасли — от развлечений до маркетинга.

2.2. Возможности машинного обучения и логического мышления

Недавние достижения в области машинного обучения были сосредоточены, в частности, 
на улучшении возможностей логического мышления и эффективности вычислений [8]. Разра-
ботка более быстрых каскадных методов с помощью спекулятивного декодирования позволи-
ла устранить одно из основных ограничений больших языковых моделей: их вычислительные 
затраты и задержку ответа. Эти технические усовершенствования сделали сложные системы 
искусственного интеллекта более практичными для применения в реальных условиях.

Математическое мышление представляет собой особенно заметную область улучшений, 
поскольку системы искусственного интеллекта демонстрируют расширенные возможности в 
решении сложных математических задач, проведении формальных доказательств и работе с 
абстрактными математическими концепциями [8]. Эти достижения имеют значение для науч-
ных исследований, инженерных приложений и образовательных инструментов.

2.3. Мультимодальные и автономные системы

К 2025 году интеграция множества модальностей в системах искусственного интеллекта 
значительно продвинулась вперед [2]. Текущие исследования демонстрируют успешное объе-
динение текста, изображений, аудио и других типов данных в согласованных системах искус-
ственного интеллекта, способных понимать и генерировать контент в различных медиа-фор-
матах. Эта мультимодальная возможность позволила найти новые применения в творческих 
отраслях, научных исследованиях и взаимодействии человека и компьютера.

Автономные агенты с искусственным интеллектом представляют собой еще одну важную 
область разработки, где системы демонстрируют возросшую независимость в выполнении за-
дач и принятии решений [7]. Теперь эти агенты могут работать с большей автономией как в 
профессиональном, так и в личном плане, упрощая сложные рабочие процессы и предостав-
ляя пользователям более квалифицированную помощь. 

Развитие автономных систем особенно заметно в специализированных областях, таких как 
научные исследования, где агенты искусственного интеллекта теперь могут автоматизировать 
важнейшие этапы исследовательского процесса, включая обзор литературы, генерацию гипо-
тез и экспериментальный дизайн. Эта возможность потенциально может ускорить научные 
открытия в различных дисциплинах.
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2.4. Разработка аппаратного обеспечения и инфраструктуры

Развитие возможностей ИИ тесно связано с инновациями в аппаратном обеспечении и 
вычислительной инфраструктуре. Все большее значение приобретает специализированный 
кремний, разработанный специально для рабочих нагрузок ИИ. Крупные технологические 
компании вкладывают значительные средства в разработку фирменных чипов, оптимизиро-
ванных для вычислений с использованием ИИ.

Исследования показывают, что разработка специализированного аппаратного обеспече-
ния стала решающим фактором в повышении производительности и эффективности систем 
искусственного интеллекта, а использование специального кремния позволяет как повысить 
производительность, так и снизить энергопотребление [6]. 

Возможности передовых вычислений также значительно расширились, позволяя обраба-
тывать данные с помощью искусственного интеллекта на локальных устройствах, а не на ос-
нове облачных вычислений. Эта разработка имеет важные последствия для обеспечения кон-
фиденциальности, снижения задержек и широкого внедрения приложений искусственного 
интеллекта.

3. Модели внедрения и отраслевая реализация

3.1. Статистика внедрения на предприятиях

Текущие данные свидетельствуют о беспрецедентном уровне внедрения ИИ в организа-
циях по всему миру [3]. Исследования показывают, что 78 % организаций в настоящее время 
используют ИИ по крайней мере в одной бизнес-функции, что представляет собой значитель-
ный рост по сравнению с 72 % в начале 2024 года и 55 % в 2023 году [3]. Такой быстрый темп 
внедрения говорит о том, что искусственный интеллект превратился из экспериментальной 
технологии в незаменимую для многих организаций.

Наиболее распространенные области внедрения включают функции в области информа-
ционных технологий, маркетинга и продаж, при этом организации сообщают о значительной 
производительности и повышение эффективности [4]. Данные опроса показывают, что 58 % 
организаций добились экспоненциального повышения производительности или результатив-
ности благодаря внедрению искусственного интеллекта, в первую очередь за счет генератив-
ного подхода [3].

Отраслевой анализ показывает, что первые пользователи ИИ в настоящее время расширя-
ют свои возможности по внедрению дополнительных бизнес-функций, в то время как органи-
зации, которые ранее колебались, начинают свои первые инициативы в области ИИ [5]. Эта 
закономерность предполагает, что внедрение ИИ будет продолжать ускоряться по мере того, 
как организации будут наблюдать за успешными внедрениями конкурентов и партнеров.

3.2. Отраслевые приложения

Различные отрасли промышленности внедряют технологии искусственного интеллекта с 
разной скоростью и в разных областях деятельности [4]. Технологический сектор продолжа-
ет лидировать в области внедрения искусственного интеллекта, но значительное внедрение 
произошло в секторах здравоохранения, финансов, производства и образования. В каждом 
секторе разработаны специализированные приложения, которые решают специфические от-
раслевые задачи и открывают новые возможности.

В здравоохранении приложения ИИ вышли за рамки диагностической визуализации и 
включают в себя поиск лекарств, индивидуальное планирование лечения и автоматизацию 
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администрирования. Финансовый службы внедрили ИИ для обнаружения мошенничества, 
алгоритмической торговли и обслуживания клиентов, при этом соблюдение нормативных 
требований остается ключевым фактором.

Производство использует ИИ для прогнозного технического обслуживания, контроля ка-
чества и оптимизации цепочки поставок, уделяя особое внимание интеграции ИИ с суще-
ствующими промышленными системами. Образовательные учреждения внедрили ИИ для 
персонализированного обучения, автоматизации администрирования и помощи в проведе-
нии исследований.

Научные исследования представляют собой особенно перспективную область применения 
ИИ-агентов теперь они способны автоматизировать важнейшие этапы исследовательского 
процесса. Эта разработка потенциально может способствовать ускорению научных открытий 
и развитию человеческих знаний в различных дисциплинах.

3.3. Модели принятия и использования потребителями

Внедрение технологий искусственного интеллекта потребителями демонстрирует интерес-
ные закономерности: исследования показывают, что 55 % россиян регулярно используют ис-
кусственный интеллект, в то время как 44 % считают, что они не используют его регулярно [6]. 
Это несоответствие свидетельствует о том, что ИИ интегрирован во многие потребительские 
приложения способами, которые пользователи могут явно не распознавать как функциональ-
ные возможности ИИ.

Модели использования ИИ на рабочих местах показывают, что инструменты ИИ все чаще 
интегрируются в повседневные рабочие процессы, а сотрудники используют ИИ для различ-
ных задач, включая создание контента, анализ и решение проблем [7]. Однако показатели вне-
дрения значительно различаются в зависимости от демографических групп и географических 
регионов, при этом молодые пользователи и представители профессий, связанных с техноло-
гиями, демонстрируют более высокие показатели внедрения.

Потребительские приложения вышли за рамки чат-ботов и виртуальных помощников и 
включают функции на базе ИИ в смартфонах, платформах социальных сетей и развлекатель-
ных сервисах. Интеграция ИИ в существующие приложения сделала функциональность ИИ 
более доступной для обычных потребителей, которые могут не прибегать к специальным ин-
струментам ИИ.

4. Производительность и конкурентный ландшафт

4.1. Глобальная конкуренция с использованием искусственного интеллекта

В 2025 году конкуренция в сфере ИИ значительно усилилась, что привело к заметным из-
менениям в относительной эффективности различных национальных программ развития ИИ 
[1]. Исследования показывают, что разрыв в производительности между ведущими моделями 
ИИ из разных стран значительно сократился. В начале 2024 года лучшая американская модель 
искусственного интеллекта превосходила лучшую китайскую модель на 9,26 %, но к февралю 
2025 года этот разрыв сократился всего до 1,70 % [2].

Такая конвергенция возможностей искусственного интеллекта в различных центрах раз-
работки позволяет предположить, что более конкурентный глобальный ландшафт указывает 
на то, что развитие искусственного интеллекта становится все более распространенным на 
международном уровне [1]. Последствия этой тенденции выходят за рамки технических воз-
можностей и охватывают экономические, стратегические и геополитические аспекты.
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Развитие ИИ в Европе также набирает обороты благодаря увеличению инвестиций в ис-
следования и разработки ИИ, особенно в областях, где особое внимание уделяется этике ИИ и 
соблюдению нормативных требований. Этот региональный подход отражает различные при-
оритеты и ценности в отношении разработки и внедрения ИИ.

4.2. Показатели эффективности модели

Недавние сравнительные исследования показывают постоянное улучшение производи-
тельности моделей ИИ по нескольким критериям оценки, включая способность рассуждать, 
решать математические задачи и кодировать [8]. Эти улучшения демонстрируют, что системы 
ИИ становятся более способными решать более широкий спектр интеллектуальных задач.

Повышение производительности было особенно заметно в областях, требующих сложного 
мышления и многоэтапного решения проблем, что говорит о том, что системы искусственно-
го интеллекта развивают сложные когнитивные способности, приближающиеся к показате-
лям человеческого уровня во многих областях. Однако в различных типах задач и контекстах 
сохраняются несоответствия в производительности.

Стандартизированный сопоставительный анализ становится все более важным по мере 
развития возможностей ИИ, поскольку разрабатываются новые системы оценки для оценки 
возможностей, которые ранее были недоступны системе ИИ [10]. Эти критерии имеют реша-
ющее значение для отслеживания прогресса и определения областей, в которых необходимы 
дальнейшие исследования.

4.3. Коммерческая конкуренция и динамика рынка

Рынок коммерческого ИИ становится все более конкурентным, и признанные технологи-
ческие гиганты сталкиваются с проблемами со стороны специализированных ИИ-компаний 
и стартапов. Это соревнование ускорило внедрение инноваций, а также вызвало обеспокоен-
ность по поводу концентрации рынка и конкурентных практик.

Инвестиции в компании, занимающиеся ИИ, достигли рекордных уровней, причем вен-
чурный капитал и корпоративные инвестиции поступают в компании, разрабатывающие как 
базовые технологии ИИ, так и специализированные приложения. Такая структура инвести-
ций отражает уверенность в коммерческом потенциале ИИ, а также указывает на капиталоем-
кий характер передовых разработок в области искусственного интеллекта.

На динамику рынка повлияли высокие вычислительные затраты, связанные с обучением 
и внедрением передовых систем искусственного интеллекта, что создает преимущества для 
организаций, обладающих значительными ресурсами, но потенциально ограничивает доступ 
для небольших организаций.

5. Влияние на общество и этические соображения

5.1. Трансформация рабочего места

Интеграция искусственного интеллекта в рабочую среду привела к значительным измене-
ниям в том, как работают организации и как сотрудники взаимодействуют с технологиями [4]. 
Исследования показывают, что искусственный интеллект превращается из дополнительного 
инструмента в неотъемлемый компонент рабочих процессов, а агенты, работающие на базе 
искусственного интеллекта, обеспечивают большую автономию и помощь как в профессио-
нальном, так и в личном контексте [7].
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Исследования показывают, что успешное внедрение ИИ требует организационной ре-
структуризации и новых подходов к сотрудничеству человека и ИИ [3]. Организации, до-
стигшие лучших результатов от внедрения ИИ, как правило, вкладываются во всестороннее 
управление изменениями и программы обучения сотрудников.

Влияние на структуру занятости остается предметом постоянных исследований, причем 
исследования указывают как на смену рабочих мест на определенных должностях, так и на 
создание рабочих мест на других. Чистый эффект, по-видимому, существенно различается в 
зависимости от отрасли и уровня квалификации, что подчеркивает важность программ повы-
шения квалификации и переподготовки кадров.

5.2. Вопросы доверия и принятия

Исследования, посвященные доверию и принятию ИИ, выявляют сложные закономерно-
сти в общественном отношении к технологиям искусственного интеллекта. Несмотря на то, 
что показатели внедрения продолжают расти, опасения по поводу надежности ИИ, предвзя-
тости и потенциальных негативных последствий остаются важными факторами, влияющими 
на общественное восприятие и принятие систем ИИ.

В литературе указывается, что доверие к системам искусственного интеллекта значительно 
варьируется в зависимости от различных приложений и демографических групп, при этом 
такие факторы, как прозрачность, объяснимость и предполагаемый контроль над системами 
искусственного интеллекта, играют решающую роль в принятии и удовлетворенности поль-
зователей. Медицинские и финансовые приложения, как правило, требуют более высокого 
уровня доверия и прозрачности, чем приложения для развлечения или повышения произво-
дительности.

Культурные различия и различия поколений существенно влияют на уровень доверия: мо-
лодые пользователи, как правило, более комфортно относятся к системам искусственного ин-
теллекта, в то время как пожилые пользователи и те, кто находится в определенных культур-
ных контекстах, проявляют больше осторожности. Эти различия имеют важное значение для 
стратегий внедрения искусственного интеллекта и разработки пользовательского интерфейса.

5.3. Последствия для конфиденциальности и безопасности

Системы искусственного интеллекта вызывают серьезные опасения по поводу конфиден-
циальности и безопасности, особенно по мере того, как они становятся более способными 
обрабатывать и генерировать личную информацию. Исследования показывают, что многие 
пользователи не в полной мере осведомлены о том, как их данные используются в системах 
искусственного интеллекта или какие меры защиты конфиденциальности применяются.

Уязвимости безопасности в системах искусственного интеллекта вызывают все большую 
озабоченность, поскольку исследователи выявляют различные векторы атак, включая враж-
дебный ввод данных, заражение данных и атаки на извлечение моделей. Эти проблемы безо-
пасности требуют новых подходов к проектированию и развертыванию систем.

Концентрация возможностей ИИ среди небольшого числа крупных технологических ком-
паний вызвала дополнительные опасения по поводу контроля над данными, влияния на рынке 
и возможности злоупотреблений. Эти опасения повлияли на обсуждения нормативных актов 
и практику корпоративного управления в индустрии ИИ.



271

6. Новые тенденции и направления на будущее

6.1. Агентные системы искусственного интеллекта

Одной из наиболее значимых тенденций, выявленных в литературе к 2025 году, является 
разработка агентных систем искусственного интеллекта, способных к независимым действи-
ям и принятию решений [7]. Эти системы представляют собой переход от реактивных инстру-
ментов искусственного интеллекта к проактивным агентам искусственного интеллекта, кото-
рые могут инициировать действия, принимать решения и адаптироваться к изменяющимся 
обстоятельствам без постоянного контроля со стороны человека.

Исследования показывают, что агентные системы искусственного интеллекта имеют по-
тенциальное применение во многих областях - от персональной помощи до автоматизации 
сложных бизнес-процессов. Однако, разработка этих систем также поднимает важные вопро-
сы об подотчетности, контроле и надлежащем балансе между автономией ИИ и контролем со 
стороны человека.

Технические проблемы разработки надежных агентных систем включают в себя обеспе-
чение надлежащего принятия решений, поддержание соответствия человеческим ценностям 
и разработку соответствующих механизмов для вмешательства человека в случае необходи-
мости. Эти проблемы представляют собой активные области исследований, которые имеют 
значительные последствия для будущего развития ИИ.

6.2. Интеграция с новыми технологиями

Системы искусственного интеллекта все чаще интегрируются с другими новыми техноло-
гиями, включая квантовые вычисления, блокчейн и устройства Интернета вещей (IoT). Эти 
интеграции создают новые возможности для приложений искусственного интеллекта, а также 
ставят новые технические и этические задачи.

Гибридные системы с квантовым ИИ представляют собой особенно многообещающую 
область разработки, имеющую потенциальное применение в задачах оптимизации, крипто-
графии и научном моделировании. Хотя практические системы с квантовым ИИ остаются в 
основном экспериментальными, прогресс в исследованиях предполагает значительный потен-
циал в будущем.

Интеграция ИИ с устройствами Интернета вещей расширила возможности применения 
систем ИИ в физических средах, позволив создавать новые приложения в «умных городах», 
автономных транспортных средствах и промышленной автоматизации. Такая интеграция 
требует новых подходов к проектированию систем, обеспечению безопасности и конфиден-
циальности.

7. Проблемы и ограничения

7.1. Технические ограничения

Несмотря на значительный прогресс, современные системы искусственного интеллекта 
по-прежнему сталкиваются с серьезными техническими ограничениями [8]. Исследования 
выявляют текущие проблемы в таких областях, как последовательность рассуждений, точ-
ность фактов и способность к обобщениям в различных областях и контекстах.

В литературе указывается, что, хотя системы искусственного интеллекта достигли впе-
чатляющей производительности во многих конкретных задачах, обеспечение надежных воз-
можностей ИИ общего назначения остается серьезной проблемой, требующей продолжения 
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исследований и разработок. К числу особых ограничений относятся трудности с логическим 
обоснованием, неспособность по-настоящему понять контекст так, как это делают люди, и 
склонность генерировать правдоподобную, но неверную информацию.

Вычислительная эффективность остается существенным ограничением, поскольку наи-
более эффективные системы искусственного интеллекта требуют огромных вычислительных 
ресурсов, что ограничивает их доступность и развертывание. Исследования в области более 
эффективных архитектур и методов обучения продолжаются, но пока не решили эту фунда-
ментальную проблему.

Заключение

Анализ литературы по ИИ в 2025 году показывает, что эта область характеризуется бы-
стрым развитием, широким внедрением и растущей сложностью как в технических возмож-
ностях, так и в практическом применении. Переход от экспериментальных систем искусствен-
ного интеллекта к готовым к производству инструментам, интегрированным в повседневные 
рабочие процессы, представляет собой важную веху в развитии искусственного интеллекта.

Ключевые выводы включают достижение существенного повышения производительно-
сти за счет внедрения искусственного интеллекта: 58 % организаций сообщили о значитель-
ном улучшении. Сокращение международного конкурентного разрыва в возможностях ИИ 
с 9,26 % до 1,70 % указывает на более глобальное распределение и конкурентную среду ИИ. 
Появление все более автономных систем ИИ предполагает фундаментальный сдвиг в сторону 
более независимых искусственных агентов.

Широкое внедрение ИИ, когда 78 % организаций в настоящее время используют ИИ по 
крайней мере в одном бизнес-процессе, демонстрирует, что ИИ превратился из новой тех-
нологии в важнейший бизнес-инструмент. Однако такое быстрое внедрение сопровождается 
важными проблемами, связанными с доверием, этикой, сложностью внедрения и влиянием на 
общество, которые требуют постоянного внимания и исследований.

Быстрые темпы изменений в технологии искусственного интеллекта предполагают, что по-
стоянный мониторинг и анализ разработок в области искусственного интеллекта будет иметь 
важное значение для понимания траектории развития отрасли и ее последствий для общества. 
По мере того как системы искусственного интеллекта становятся все более функциональными 
и повсеместными, важность продуманных, основанных на фактических данных подходов к 
управлению и внедрению искусственного интеллекта будет только возрастать.

Совмещение множества возможностей ИИ в более общие и автономные системы пред-
ставляет собой как беспрецедентную возможность, так и значительную ответственность для 
сообщества исследователей и разработчиков ИИ. От того, насколько хорошо управляются эти 
возможности и обязанности, скорее всего, зависит, реализует ли ИИ свой потенциал на благо 
человечества, избегая при этом потенциальных негативных последствий.
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РАЗРАБОТКА ИНСТРУМЕНТОВ АНАЛИЗА ПРЕДПОЧТЕНИЙ ЗРИТЕЛЕЙ 
НА ОСНОВЕ ПРОГНОЗИРОВАНИЯ РЕЙТИНГА ФИЛЬМА ПО ЕГО ОПИСАНИЮ
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Т. К. Захарова

Аннотация. В работе поставлена задача прогнозирования рейтинга фильма по его описа-
нию. Этот подход позволяет оценить успех у зрителей еще до появления первых отзывов, 
что способствует автоматизации анализа предпочтений аудитории. Выделяется актуаль-
ность данной темы и потенциальные области практического применения, обсуждаются 
различные методики обработки текста и машинного обучения, разбираются подходы к 
решению данной задачи, метрики оценки качества модели, а также конкретный план по 
достижению результата и дальнейшие возможности для расширения.
Ключевые слова: прогноз рейтингов фильмов, машинное обучение, обработка есте-
ственного языка, анализ текстов, кинопроизводство.

Введение

Сейчас киноиндустрия показывает стремительный рост производства контента: от пол-
нометражных фильмов до телесериалов. Онлайн-сервисы и платформы борются за внимание 
зрителей, используя такие способы, как персонализированный контент, подборку по темам и 
адаптирующиеся интерфейсы. В это время, когда сфера киноиндустрии переполнена, зрителю 
требуется инструментарий для предварительной оценки того, насколько данный фильм смо-
жет оправдать его ожидания.

Обычно рейтинги формируются уже после выпуска фильма, когда зрители его оцени-
ли. Но еще на стадии создания проекта, когда готовятся сценарии, презентации, аннотации, 
продюсерам необходим сервис, который сможет подсказать будет ли фильм успешен у целевой 
аудитории. В этой проблеме могла бы помочь модель предсказания рейтинга фильма на ос-
нове короткого описания, она способствует оптимизации решений, связанных с финансами, 
продюсированием и рекламой.

Текстовое описание к фильму содержит важнейшие признаки, связанные с семантикой, 
а именно: жанровая принадлежность, эмоциональная окраска, структура повествания, что 
непосредственно связано с потенциальным зрителем. Современные методы обработки есте-
ственного языка (NLP), которые отлично сочетаются с методами машинного обучения, по-
могают извлекать указанные характеристики, что делает задачу предсказания рейтинга не 
теоретическим аспектом, а практически осуществимой задачей. Данная работа использует су-
ществующие методики, определяет их ограничения и преимущества, выделяет факторы, вли-
яющие на точность предсказания.

Актуальность

Рассмотрим данный вопрос в рамках экономической сферы. Решения о выделении средств 
для кинопроизводства принимаются еще задолго до выхода фильма в прокат. Наличие спро-
гнозированного рейтинга сможет помочь корректно распределить ресурсы, оптимизировать 
расходы, а также снизить риски нецелевого использования финансов. Для начинающих сту-
дий такой механизм особенно важен, он поможет выделить перспективы проекта, не тратя 
средства на рекламные кампании.
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Со стороны развития технологий анализа текста за последнее время произошел стреми-
тельный прогресс. Большое количество компаний стало переходить от простых к частотным 
методам, использующим контекстно-зависимые эмбеддинги и архитектуры на основе транс-
формеров. Данные методы позволяют учитывать многозначность слов, связи структур и эмо-
циональную окраску текста. Эти параметры ранее трудно поддавались интерпретации. 

Со стороны социальной сферы с увеличением количества систем, которые выделяют пер-
сонализированные рекомендации, появляется потребность в учете интересов потребителей. 
Система прогноза поможет снизить количество неинтересного и неактуального контента для 
конкретного зрителя, что позволяет расположить к себе потенциальных клиентов и сохранить 
имеющихся.

Также важным моментом является научная значимость. Анализ предпочтений зрителей и 
содержания текстов позволяет выделить жанровые, культурные и локальные закономерности, 
способствуя развитию лингвистики, этнографии и прикладного машинного обучения.

1. Постановка задачи

Формулируем задачу: мы имеем набор фильмов, описанию к фильму, а также дополнитель-
но набор признаков(год, страна, режиссеры, жанры, список главных актеров, продолжитель-
ность фильма). Нам необходимо по имеющимся данным предсказать рейтинг фильма.

Важнейшие характеристики задачи:
• Тип задачи — регрессия (предсказывается числовое значение). В отдельных ситуациях 

может быть преобразована в классификацию (например, «низкий/средний/высокий рей-
тинг»), что полезно для практических сценариев.

• Входные данные — тексты различной длины; требуется их унификация и представление 
в векторном виде.

• Дополнительные признаки — помимо текста, возможно использование визуальных и та-
бличных данных: трейлеры, изображения, бюджет и др. В данной статье фокус сделан на тек-
стовом описании, но обсуждается возможность интеграции мультимодальных источников.

Этапы решения задачи включают:
1. Сбор и объединение данных из разных источников.
2. Предварительная обработка и очистка текстов.
3. Извлечение признаков: от классических статистических методов до контекстуальных 

векторных представлений.
4. Обучение регрессионной модели.
5. Оценку качества и анализ погрешностей.
6. Внедрение и последующий мониторинг модели.

2. Подходы к решению задачи

2.1. Классические методы (TF-IDF и ML)

Один из первых подходов основывался на представлении текста в виде набора частот слов 
(bаg-оf-wоrds) или TF-IDF матрицы. На этих данных обучались линейные модели, SVM, слу-
чайные леса и алгоритмы градиентного бустинга. Такие методы просты в применении, об-
ладают низкой вычислительной стоимостью и приемлемой интерпретируемостью признаков, 
однако полностью игнорируют порядок слов и не учитывают контекст.

Примером может служить использование TF-IDF совместно с градиентным бустингом для 
выявления наиболее значимых терминов в описании («трогательный», «напряжённый») и их 
влияния на итоговую оценку.
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2.2. Эмбеддинги слов и усреднение

Модели Wоrd2Vec, FаstText или GlоVe позволяют получать плотные векторные представ-
ления, отражающие смысловые связи между словами. Распространённая стратегия — вычис-
ление среднего вектора по всем словам описания. Такой подход лучше передаёт семантику 
текста и превосходит по качеству традиционные мешки слов, но всё ещё не захватывает син-
таксические структуры.

Эмбеддинги в сочетании с деревьями решений или простыми нейронными сетями обеспе-
чивают заметный прирост качества без значительных вычислительных затрат.

2.3. Контекстные модели и трансформеры

Современные архитектуры (например, BERT, RоBERTа, DistilBERT) формируют контекст-
но-зависимые представления, учитывая окружение каждого слова. Для прогнозирования рей-
тинга применяются два основных подхода:

• использование эмбеддингов описания в качестве входа для дополнительной регрессион-
ной модели;

• дообучение (fine-tuning) трансформера на задаче прогнозирования рейтинга с учетом 
специфики кинематографических текстов.

Трансформерные модели особенно эффективны при наличии большого обучающего кор-
пуса и необходимости учитывать эмоциональные и повествовательные нюансы описаний.

2.4. Гибридные и мультимодальные решения

Для повышения точности предсказаний текстовые признаки объединяют с метаданными 
(жанр, актёрский состав, год релиза) и визуальной информацией (постеры, трейлеры). Муль-
тимодальные модели интегрируют данные разных типов и формируют единое представление, 
что зачастую улучшает точность. Подобные архитектуры включают отдельные ветви обработ-
ки для каждого источника и общий блок, осуществляющий регрессию.

2.5. Интерпретируемость моделей

Практическая ценность прогноза возрастает при наличие объяснимости. Методы SHАP и 
LIME позволяют оценить вклад отдельных признаков и слов в результат, что важно для при-
нятия решений продюсерами и аналитиками.

3. Источники данных и предварительная обработка.

3.1. Источники

Для формирования обучающего набора могут использоваться:
• IMDb — подробные описания, пользовательские оценки и рейтинги;
• TMDB — большая база метаданных и мультимедийного контента;
• Кинопоиск — значимый источник русскоязычных данных;
• тематические фестивальные архивы, рецензии критиков и данные социальных сетей, от-

ражающие ранний интерес аудитории.
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3.2. Предобработка текста

Ключевые шаги включают:
• нормализацию (приведение регистра, удаление лишних символов);
• очистку HTML-элементов;
• токенизацию с учётом особенностей языка;
• лемматизацию или стемминг;
• удаление стоп-слов;
• идентификацию имен собственных (актёров, режиссеров, локаций), которые могут быть 

значимыми предикторами.

3.3. Инжиниринг признаков

Помимо векторизации полезно формировать дополнительные характеристики:
• длина описания (в символах или словах);
• доля прилагательных или наречий;
• наличие тематических ключевых слов (например, «биография», «триллер»);
• бинарные индикаторы жанров;
• статистические данные по похожим фильмам.

4. Оценка качества модели

Корректное тестирование играет решающую роль.

4.1. Метрики

• MАE — интерпретируемая величина, устойчивость к выбросам;
• MSE / RMSE — чувствительность к крупным отклонениям;
• R² — показатель доли объяснённой дисперсии;
• Метрики ранжирования (Speаrmаn, Kendаll) — актуальны для рекомендательных систем.

4.2. Анализ ошибок

Рекомендуется изучать примеры с крупными отклонениями, что помогает выявлять осо-
бенности моделей и недостатки обучающих данных. Также полезно анализировать редкие 
жанры и узкие тематические сегменты, где модели обычно работают хуже.

4.3. Базовые и продвитнутые решения

Простые модели на TF-IDF и линейной регрессии служат стартовой точкой, после чего сле-
дует сравнение с методами на эмбеддингах и трансформерах. Финальный выбор модели опре-
деляется балансом между точностью и вычислительными требованиями.

5. Практическая значимость и перспективы развития

5.1. Применение

• рекомендательные системы: ранжирование новых релизов и решение проблемы cоld-stаrt;
• аналитика для продюсеров: ранняя оценка сценариев и аннотаций;
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• маркетинг: адаптация описаний под целевую аудиторию;
• фестивальные комитеты: автоматическая фильтрация заявок по вероятному восприятию.

5.2. Ограничения и риски

• субъективность оценок: разные группы пользователей по-разному воспринимают один 
и тот же проект;

• внешние факторы: маркетинг, актёрский состав, стратегия релиза существенно влияют 
на рейтинг, но редко отражены в аннотациях;

• смещение данных: публичные датасеты могут содержать нерепрезентативные примеры;
• этические вопросы: автоматический прогноз не должен заменять экспертное мнение.

6. Практическая методика реализации

Последовательность действий при создании рабочей системы включает:
1. Сбор данных (например, с Кинопоиска), включая метаданные и показатели рейтингов.
2. Исследовательский анализ: изучение распределения оценок по жанрам, статистика дли-

ны описаний, частотный анализ лексики.
3. Предобработка: очистка, токенизация, лемматизация, выделение именованных сущностей.
4. Базовый bаseline: TF-IDF + линейная регрессия или градиентный бустинг.
5. Улучшение: применение Wоrd2Vec/GlоVe и комбинированных признаков.
6. Современный вариант: дообучение модели типа BERT с использованием методов объяс-

нимости (SHАP).
7. Валидация: перекрёстное тестирование и выделенный тестовый набор.
8. Эксплуатация: регулярное обновление модели и учёт пользовательской обратной связи.

Заключение

Прогнозирование рейтинга фильма по его аннотации — это задача, которая важна и с 
практической точки зрения, и с теоретической. По сути, из текстового описания можно вы-
тащить много полезной информации и превратить ее в набор признаков, на основе которых 
модель способна достаточно точно оценивать будущий рейтинг. Современные методы обра-
ботки естественного языка, особенно модели на архитектуре трансформеров, сильно улучши-
ли качество таких предсказаний и расширили возможности анализа.

При этом остаются и проблемы: на результат влияют внешние факторы, в данных могут 
быть смещения, а сами модели часто сложно интерпретировать. Поэтому для реального при-
менения имеет смысл дополнять текстовые признаки другими источниками данных и муль-
тимодальной информацией, чтобы сделать прогнозы более устойчивыми и надежными. На 
основе уже существующей методологической базы и практических рекомендаций можно раз-
рабатывать полноценные решения для рекомендательных сервисов, инструментов для продю-
серов и систем планирования продвижения контента. Перспективные направления развития 
связаны с углублением мультимодальных подходов, адаптацией моделей под разные группы 
пользователей и тщательным анализом языковых особенностей, которые влияют на долго-
срочную популярность фильмов.
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К. А. Зверев, И. Е. Воронина

Аннотация. Рассматривается разработка системы семантического поиска и рекоменда-
ций научных статей на основе векторных представлений текста. Представлена архитек-
тура, алгоритмы ранжирования на основе генерации эмбеддингов текста научных работ, 
получаемые при помощи моделей искусственного интеллекта в облачных сервисах, а так-
же методы обработки пользовательских предпочтений. Предлагаемое решение обеспечи-
вает персонализированный поиск научных публикаций и может применяться в образо-
вательных и исследовательских платформах.
Ключевые слова: персонализированные рекомендации, интеллектуальный поиск, тема-
тическая кластеризация, ранжирование результатов, обработка текстов, цифровые би-
блиотеки, векторизация текста, искусственный интеллект.

Введение

В современном научном пространстве наблюдается стремительный рост объёма публика-
ций. Каждый исследователь сталкивается с проблемой информационной перегрузки и труд-
ностью быстрого нахождения релевантных источников. Имеющиеся инструменты являются 
не всегда удобными и зачастую не обеспечивают достаточной удовлетворённости пользовате-
ля, поскольку поиск по ключевым словам и традиционным базам данных не позволяет точно 
подбирать материалы с учётом индивидуальных интересов.

Современные исследователи сталкиваются с необходимостью обработки огромного коли-
чества научных публикаций, что существенно усложняет поиск релевантных материалов для 
проведения качественного анализа и подготовки собственных исследований. Существующие 
инструменты поиска, ориентированные на ключевые слова и стандартные базы данных, часто 
не обеспечивают достаточной точности и персонализации, что приводит к потере времени и 
снижению эффективности работы с научной литературой.

В связи с этим возникает потребность в разработке интеллектуальной системы, которая 
могла бы анализировать содержание статей и предоставлять пользователю рекомендации, 
учитывающие семантическую близость материалов и индивидуальные интересы [1]. Основ-
ной задачей системы является обеспечение эффективного поиска и упорядочивания научных 
публикаций, включая обработку и нормализацию текстов, преобразование их в векторные 
представления, а также построение механизма ранжирования и кластеризации.

Ключевым требованием к проекту является высокая точность и релевантность выдачи при 
работе с различными объемами данных, а также возможность гибкой интеграции с существую-
щей инфраструктурой без необходимости использования специализированного оборудования. 

Задача создания системы, способной обеспечивать точный и удобный подбор научных пу-
бликаций в условиях растущего объёма информации, остаётся актуальной. В частности, при-
менение технологий искусственного интеллекта и современных методов анализа текста по-
зволяет увеличить релевантность результатов и качество поиска для конечного пользователя. 

1. Предлагаемые технологии и алгоритмы

Для разработки предлагается использовать модульную архитектуру для обеспечения по-
следующего масштабирования и возможности независимой разработки каждого компонента. 
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Для решения задачи необходимо реализовать следующие возможности: сбор и хранение дан-
ных о научных статьях, обработку текста, поиск релевантных статей по запросу пользователя, 
ранжирование и рекомендации. 

Для достижения поставленных целей необходимо применить такие инструменты, как ге-
нерация эмбеддингов загруженных публикаций, алгоритмы векторного поиска [2] текстов со 
схожей тематикой на основе вычисления косинусного расстояния, а также API и пользова-
тельский клиент, обеспечивающие взаимодействие пользователя с системой. 

Реализация указанных алгоритмов позволит выстроить полный цикл работы пользователя 
с научными публикациями — начиная от загрузки документа и его обработки, и заканчивая 
предоставлением наиболее релевантных и персонализированных результатов. 

1.1. Сбор и хранение данных

Пользователи могут загружать научные статьи в различных форматах, включая PDF и 
DOCX. После загрузки файлы должны сохраняться объектном хранилище, совместимом с 
протоколом S3, например, MinIO. Это обеспечивает надежное хранение документов и упро-
щает управление большим количеством данных.

Метаданные статей, такие как название, авторы, дата публикации, ключевые слова и ан-
нотация, сохраняются в реляционной базе данных PostgreSQL. Структурированное хранение 
метаданных позволяет быстро выполнять поиск по атрибутам документа, а также облегчает 
интеграцию с внешними сервисами и аналитическими инструментами. 

1.2. Обработка и нормализация текста

Для извлечения текста из файлов предлагается использовать библиотеку Apache Tika, ко-
торая поддерживает широкий спектр форматов файлов и позволяет получать текст в структу-
рированном виде. Она позволит выполнить очистку текста от лишних символов и формати-
рования.

Дополнительно производится выделение структурных элементов статьи — заголовков, 
подзаголовков, списков литературы и ключевых фрагментов. После подобной обработки бу-
дет поучено унифицированное представление текста для корректной генерацию эмбеддингов. 
Обработка текста также может включать сегментацию больших документов на логические 
блоки, что повышает точность последующего анализа и поиска по смыслу.

1.3. Генерация эмбеддингов

Также необходим модуль для преобразования текстовых данные в числовые векторные 
представления, которые отражают семантическое содержание статьи. Каждая статья должна 
быть закодирована в эмбеддинг, что позволяет проводить вычисления близости между тек-
стами и формировать рекомендации. Векторизация текста обеспечивает возможность выяв-
ления смысловых связей между статьями, что невозможно при поиске по ключевым словам.

Использование облачного сервиса упрощает интеграцию ИИ-моделей в систему и позво-
ляет обрабатывать большие объёмы данных без необходимости развёртывания собственных 
моделей на сервере. 

1.4. Векторный поиск

При выполнении запроса пользователя текст запроса также преобразуется в эмбеддинг, 
после чего система выполняет поиск с использованием метрики косинусного сходства, что 
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позволяет находить статьи, наиболее близкие по смыслу к запросу. Из этого следует, что эм-
беддинги статей необходимо хранить в базе данных, которая поддерживает использование 
специализированных индексов для эффективного поиска по высокоразмерным векторным 
представлениям. 

Использование PostgreSQL с векторными индексами позволяет объединять хранение 
структурированных метаданных и эмбеддингов в одной системе, упрощая управление данны-
ми и интеграцию с другими компонентами. Такой подход обеспечивает позволяет выполнять 
семантический поиск без необходимости разворачивать отдельную векторную базу. 

1.5. Ранжирование и кластеризация

После выполнения поиска система применяет алгоритмы ранжирования, которые упоря-
дочивают найденные статьи по степени соответствия запросу. Основным критерием являет-
ся косинусное сходство между эмбеддингом запроса и эмбеддингами статей. Дополнительно 
система может учитывать тематические кластеры, предпочтения пользователя и историю его 
взаимодействия с материалами.

Модуль рекомендаций [3] формирует персонализированный список статей, который учи-
тывает интересы пользователя и семантические связи между публикациями. Тематическая 
кластеризация позволяет выявлять направления исследований и группировать статьи по те-
мам, что облегчает навигацию по большому количеству документов и повышает удобство ис-
пользования системы. 

2. Предлагаемая архитектура системы

Предлагаемая архитектура (рис. 1) представляет собой интегрированную платформу, обе-
спечивающую сбор научных статей, их обработку, генерацию векторных представлений и по-
следующее выполнение семантического поиска и персонализированных рекомендаций.

Основой системы является backend-сервис, предназначенный для обработки пользова-
тельских запросов. Обработка начинается с загрузки файлов научных статей. Полученные 
документы передаются модулю предварительной обработки, который сохраняет их в S3 хра-

Рис. 1. Схема обработки поискового запроса
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нилище и выполняет очистку текста: устранение форматирования, нормализацию и разбие-
ние на логические сегменты. Тем самым обеспечивается единообразие представления данных 
перед векторизацией.

После подготовки текст поступает в облачный сервис, где вызывается модель эмбеддингов. 
Результатом этого взаимодействия является числовой вектор, характеризующий смысловое 
содержание документа. Полученный эмбеддинг вместе с метаданными статьи сохраняется в 
базе данных PostgreSQL с использованием специализированных индексов для ускорения по-
иска по косинусному сходству. При формировании пользовательского запроса система вы-
полняет ту же последовательность действий: текст запроса нормализуется, отправляется в 
облачный сервис для получения эмбеддинга, а затем используется для выполнения поиска 
ближайших соседей внутри PostgreSQL.

Процесс поиска сопровождается дополнительными алгоритмами ранжирования, которые 
учитывают не только косинусную близость, но и факторы тематической принадлежности, 
формируя итоговый список наиболее релевантных материалов. Полученный список агрегиру-
ется и возвращается клиентскому приложению.

Все компоненты системы работают согласованно, формируя единый конвейер интеллекту-
ального поиска. Взаимодействие между ними поддерживается через REST-запросы, внутрен-
ние API и механизмы оптимизированных SQL-запросов.

Заключение

Предложенный подход для реализации прототипа интеллектуальной системы для поиска 
и персонализированных рекомендаций научных статей, использует современные методы об-
работки текста и векторизации. 

Архитектура системы построена на модульном принципе, включающем сбор и хране-
ние данных, обработку текста, генерацию эмбеддингов, векторный поиск с использованием 
PostgreSQL и алгоритмы ранжирования и рекомендаций. Это обеспечивает высокую точность 
поиска, персонализацию выдачи и возможность масштабирования системы под различные 
объёмы данных. Применение эмбеддингов, получаемых при помощи модели искусственно-
го интеллекта в облачном сервисе, позволит осуществлять семантический поиск и выявлять 
скрытые смысловые связи между публикациями.

Используемые технологии демонстрируют эффективность интеграции современных 
ИИ-инструментов в решение практических задач исследователей, снижая затраты на инфра-
структуру и упрощая разработку. Предложенная архитектура может служить основой для 
дальнейшего расширения функциональности системы, включая более сложные методы кла-
стеризации, интеграцию с внешними базами данных и разработку расширенного пользова-
тельского интерфейса.

Таким образом, представленное решение может значительно облегчить процесс работы с 
научными публикациями, повысить эффективность поиска релевантной информации и обе-
спечить исследователям персонализированный подход к рекомендациям, что открывает пер-
спективы для дальнейшего развития интеллектуальных инструментов поддержки научной 
деятельности.
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ПОСТРОЕНИЕ МНОГОФУНКЦИОНАЛЬНОГО АГЕНТА 
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В. В. Кашко, С. А. Олейникова

Аннотация. В контексте данной работы рассмотрено построение многофункционально-
го агента, основанного на глубоком обучении с подкреплением, способного запоминать 
множество различных стратегий без потери ранее полученных знаний и навыков. Агент 
представляет собой глубокую полносвязную нейронную сеть, основанную на ранее пред-
ложенной архитектуре нейронного кластера, состоящего из групп, с использованием пе-
реключающих нейронов для управления выбором изученных политик. Производится де-
монстрация построения многофункционального агента как с полностью разделёнными 
группами, так и с применением прогрессивных нейронных сетей, обладающих боковыми 
связями. Тестирование реализовано на имитационных средах CliffWalking и CartPole па-
кета OpenAI Gym. В результате тестовые агенты продемонстрировали многофункцио-
нальность без «забывания». 
Ключевые слова: глубокое обучение с подкреплением, многофункциональный агент, 
глубокие нейронные сети, архитектура, нейронный кластер, группа нейронов, переклю-
чающий нейрон, скрытый слой, боковые связи, стратегия, шагающий робот, локомотор-
ная программа, окружающая среда, вознаграждение, суммарный доход.

Введение

Обучение с подкреплением, в особенности его разновидность, основанная на глубоких 
нейронных сетях, аппроксимирующих как стратегию, так и функцию ценности, представляет 
собой гибкий и универсальный подход для построения самообучающихся систем [1–3]. Оно 
успешно применяется при решении задач искусственного интеллекта и интеллектуальной ро-
бототехники. Основной целью главного исследования является разработка системы управле-
ния мобильным шагающим роботом на основе глубокого обучения с подкреплением, способ-
ного автономно обучаться и выполнять множество локомоторных программ, подстраиваясь 
под условия окружающей среды посредствам взаимодействия с ней, путём применения метода 
проб и ошибок [4]. Для достижения поставленной цели необходимо решить множество задач, 
одна из которых заключается в построении многофункционального агента, способного запо-
минать множество разнообразных двигательных стратегий и извлекать полученные знания в 
зависимости от обстоятельств. Данная проблематика строится на двух базовых подзадачах: 
поиск способа запоминания множества политик и их выбора по требованию агента. В каче-
стве объекта настоящего исследования выступает интеллектуальный агент, основанный на 
алгоритме глубокого обучения с подкреплением. Предметом исследования является органи-
зация структуры агента, позволяющая ему обучаться нескольким стратегиям принятия реше-
ний, обеспечивая многофункциональность с точки зрения освоения новых навыков и их си-
туативного использования. Цель работы заключается в построении многофункционального 
интеллектуального агента на базе глубокого обучения с подкреплением, способного объеди-
нить в себе множество политик и выполнять их селекцию. В контексте исследования выполня-
ется построение агента, при котором он представляет собой глубокую полносвязную нейрон-
ную сеть, основанную на ранее предложенной архитектуре нейронного кластера, состоящего 
из групп, с использованием переключающих нейронов для управления выбором изученных 
политик. Производится демонстрация построения как с полностью разделёнными группами, 
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так и с применением прогрессивных нейронных сетей, обладающих боковыми связями. В ка-
честве алгоритма глубокого обучения с подкреплением для каждого рассмотренного случая 
был использован метод исполнитель-критик. Тестирование производилось на имитационных 
средах CliffWalking-v0 и CartPole-v0 пакета OpenAI Gym, в результате которого разработанные 
агенты продемонстрировали запоминание стратегий поведения в соответствующих тестовых 
средах без потери знаний как для случая с полностью разделёнными группами нейронов, так 
и для случая использования боковых связей.

1. Существующие подходы к построению многофункционального агента

Глубокое обучение с подкреплением, в том числе и в контексте управления локомоцией ша-
гающего робота, способно обеспечить гибкую настройку агента для реализации необходимой 
политики принятия решений в ходе выполнения конкретной задачи [2, 3]. Основной пробле-
мой является эффект «забывания», который заключается в потере ранее изученной стратегии 
при смене задачи, связанной с перестройкой под новые условия. В контексте глубокого обу-
чения с подкреплением, агент строится на базе глубокой нейронной сети. Ранее описанный 
эффект возникает по причине низкой репрезентативной способности соответствующего ап-
парата, что не позволяет аппроксимировать более одной стратегии [5]. Следующей пробле-
мой построения многофункционального агента является определение способа селекции ра-
нее изученных политик. Для решения соответствующих задач, было предложено множество 
подходов, позволяющих агенту обучаться разнообразным стратегиям без потери предыдущих 
знаний, но не все решают вопрос их последующей селекции. Иерархический подход позволяет 
формировать агента, состоящего из нескольких уровней. На нижнем уровне располагаются 
низкоуровневые стратегии, которые управляются менеджером — сетью принятия решений 
[5]. Главный недостаток иерархического подхода заключается в сложной структуре. Посколь-
ку содержится несколько связанных между собой уровней, каждый из которых содержит ней-
ронные сети, становится трудно произвести качественное обучение, в результате чего возни-
кает множество ошибок в процессе функционирования агента. Смесь экспертов (Mixture of 
Experts, MoE)  позволяет разделить вычисления между подсетями-экспертами, контролируе-
мыми сетью-маршрутизатором, которая на основании входных данных определяет, какие из 
экспертов будут заниматься обработкой [6, 7]. Данный подход обладает теми же недостатками, 
что и иерархический. Дополнительно добавляется проблема, связанная с «пустыми» экспер-
тами (не используемыми), по причине которой необходимо проведение регуляризации. Ещё 
одним подходом к построению многофункционального агента является дистилляция [8, 9]. 
Его основной принцип заключается в предварительном обучении требуемых стратегий с по-
следующим использованием их для обучения обобщающей студент-политики. В отличие от 
предыдущих подходов, где используется совокупность отдельных нейронных сетей, в дистил-
ляции, результатом является единственная стратегия. Основным недостатком является по-
теря деталей обучающих политик, в результате чего результирующая работает не стабильно. 
Подход требует хранилища данных для всех обобщаемых задач, что требует большого количе-
ства ресурсов памяти и невыполнимо во множестве случаев. Использование прогрессивных 
нейронных сетей (Progressive Neural Networks) представляет собой один из подходов, призван-
ных обеспечить решение проблемы «забывания» предыдущих знаний при построении много-
функционального агента, основанного на глубоком обучении с подкреплением [10]. Для этого 
предлагается для каждой новой задачи добавлять к существующей архитектуре новый стол-
бец, представляющий собой глубокую нейронную сеть с боковыми соединениями, обеспе-
чивающими связь с предыдущими настроенными столбцами. В результате чего архитектура 
динамически увеличивается в размере путём решения новых задач. В этом кроется основной 
недостаток подхода, поскольку с ростом количества столбцов (дополнительных сетей) возрас-
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тает количество обрабатываемых параметров. А при некорректной классификации действий 
может привести к неконтролируемому разрастанию архитектуры. К тому же, в работе [10] не 
представлено решение задачи селекции столбцов. Данный вопрос озвучен и обозначен, как 
требующий дальнейшего рассмотрения. Исходя из вышесказанного, следует, что на текущий 
момент, предлагаемые подходы к построению многофункционального агента не обеспечива-
ют должным образом качество его функционирования и простоту настройки и использова-
ния. Следовательно, поиск оптимальной организации структуры является актуальным и от-
крытым вопросом.    

2. Построение многофункционального агента на основе полносвязной архитектуры 
нейронного кластера с использованием переключающих нейронов

Ранее была предложена архитектура нейронной сети, основанная на переключающих ней-
ронах, которая обеспечивает многофункциональность и удобный механизм селекции страте-
гий. В её основе заложены следующие идеи. Существует нейронный кластер — совокупность 
нейронов, разделённых на группы. Каждой группе соответствует собственная стратегия. Кла-
стер представляет собой полносвязную нейронную сеть и характеризуется программной ёмко-
стью W  — количеством групп. Активация и деактивация групп производится посредствам 
переключающих нейронов (имитируют поведение нервных клеток базальных ганглиев голов-
ного мозга), которые генерируют битовые маски в соответствии с бинарными кодами выбран-
ных стратегий и производят включение и отключение нейронов управляемого глубокого слоя 
кластера по аналогии с Dropout регуляризацией. Пример организации многофункционально-
го агента, основанного на соответствующей архитектуре нейронной сети без использования 
боковых связей, представлен на рис. 1.

Применение данной архитектуры нейронной сети к построению многофункционального 
агента позволяет выполнять разделение задач на независимые группы внутри одной нейрон-
ной сети, что обеспечивает независимость их обучения и ликвидирует проблему, связанную с 
«потерей памяти» при переключении агента на другую задачу. Каждый переключающий ней-
рон отвечает за активацию нейронов собственного слоя таким образом, что нейроны одного 
слоя, принадлежащие разным группам, не пересекаются. Отсутствие связи между группами 
не всегда положительно влияет на настройку стратегий. Согласно работе [10], посвящённой 
прогрессивным нейронным сетям, наличие боковых связей с ранее изученными стратегиями 
обеспечивает лучшую сходимость. Несмотря на попытку решения проблемы «забывания», в 

Рис. 1. Пример организации многофункционального агента, основанного на предлагаемой 
архитектуре для случая двухслойной нейронной сети с двумя входами и одним выходом, 
состоящей из двух групп нейронов, с использованием двух переключающих нейронов, где 

0 — не активный нейрон, 1 — активный, 00 — код первой группы, 01 — код второй группы
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соответствующем исследовании остался открытым вопрос маркирования стратегий (столб-
цов), который легко решается путём применения архитектуры, основанной на переключаю-
щих нейронах и внедрения некоторых допущений. Рассмотрим прогрессивную нейронную 
сеть, состоящую из двух столбцов, каждый из которых представлен глубокой нейронной се-
тью с двумя скрытыми слоями, как показано на рис. 2.

Изображённая на рис. 2 нейронная сеть может быть получена из полносвязной, путём ис-
ключения «левых» связей (от 2k  к 1k ) относительно текущего столбца. Ограничим соответ-
ствующую нейронную сеть, применив программную ёмкость. Пусть сеть способна работать с 
количеством программ, равным .W  Помимо глубоких слоёв, произведём добавление пере-
ключающего нейрона на слой выхода. В результате, предложенная архитектура решает задачу 
переключения между стратегиями в работе [11], путём активации нейронов столбца в каждом 
из внутренних слоёв, включая слой выхода, тем самым активируя соответствующий бинарной 
комбинации стратегии столбец. Применение предложенной архитектуры сопряжено с исполь-
зованием дополнительных шагов в процессе предсказания выхода для прогрессивной нейрон-
ной сети. На основании рис. 2, алгоритм предсказания для прогрессивной нейронной сети, 
состоящей из двух столбцов (программ) с двумя скрытыми слоями, двумя входами и двумя 
выходами будет иметь следующий вид: 

Шаг 1: Выполнить расчёт выходов слоя 1.h
Шаг 2: Получить маску переключающего нейрона для слоя 2.h
Шаг 3: Согласно полученной маске для слоя 2h  вычислить выходные значения для актив-

ных нейронов 1
2h  слоя 2h  по всем связям с нейронами слоя 1.h

Шаг 4: Выполнить инверсию маски, полученной от переключающего нейрона для слоя 2.h
Шаг 5: Получить маску переключающего нейрона для слоя 1.h
Шаг 6: Выполнить инверсию маски, полученной от переключающего нейрона для слоя 1.h
Шаг 7: На основе инвертированных масок, полученных на шагах 4 и 6 вычислить выходные 

значения для активных нейронов слоёв 1h  и 2h  — 2
2 .h

Шаг 8: Сформировать рассчитанный вектор выходов слоя 2h  по следующей формуле: 2h = 
concat( 1

2h , 2
2h ), где concat — операция слияния векторов в один.

Шаг 9: Получить маску переключающего нейрона для слоя выходов.
Шаг 10: Согласно полученной маске для слоя 2h  вычислить выходные значения для актив-

ных нейронов выходного слоя по всем связям с нейронами слоя 2.h

Рис. 2. Пример прогрессивной нейронной сети с двумя столбцами
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Процесс обратного распространения ошибки будет выполняться по аналогии с тем, как 
он производится при регуляризации Dropout, с учётом масок, сгенерированных переключа-
ющими нейронами. Данный алгоритм может быть расширен для любого количества скрытых 
слоёв. Поскольку задача построения многофункционального агента рассматривается в кон-
тексте управления локомоцией шагающего робота, где вход и выход для каждой локомотор-
ной программы, аппроксимируемой нейронной сетью, являются унифицированными, то при 
использовании боковых связей не требуется использование переключающего нейрона на слое 
выходов нейронной сети. В результате, предлагаемая организация агента обеспечивает воз-
можность использования, как разделённых групп, так и преимущества прогрессивных ней-
ронных сетей, путём добавления боковых связей. Стоит отметить, что в контексте предлагае-
мой организации может использоваться любой глубокий алгоритм обучения с подкреплением.

3. Практические результаты

Для тестирования предлагаемого подхода к построению многофункционального агента 
использовалась библиотека имитационных сред OpenAi Gym. Интеллектуальный агент обу-
чался стратегиям в двух средах: CartPole — задача о балансировке перевёрнутого маятника 
и CliffWalking — «блуждание возле обрыва». Поскольку данные имитационные среды имеют 
разные характеристики входных параметров и генерируемых выходов, для объединения их 
в контекст одного агента было произведено приведение входных и выходных данных к об-
щему виду. CartPole-v0 представляет собой классическую задачу управления балансировкой 
перевёрнутого маятника. Основная цель агента, в контексте данной задачи, заключается в обе-
спечении максимально возможного времени удержания баланса стержня (в шагах), располо-
женного на подвижной тележке. За каждый стабильный шаг среда назначает вознаграждение 
в размере 1. Завершением эпизода считаются потеря баланса и достижение максимально воз-
можного количества шагов, равного 200. Количество возможных действий равно 2, где 0 — 
отклонение тележки влево, а 1 — отклонение тележки вправо. Наблюдение представлено мас-
сивом, состоящим из четырёх элементов: положение тележки, скорость тележки, угол наклона 
опоры, угловая скорость опоры. CliffWalking-v0 представляет собой сетчатый мир, состоящий 
из 4 × 12 клеток. Ячейка с координатами [3, 0] или состояние 36 является стартовым, а ячейка 
[4, 11] или состояние 48 — целью. Между данными ячейками располагается «обрыв», который 
необходимо обойти агенту для достижения целевой точки. В среде допускаются четыре дей-
ствия: 0 — движение вверх, 1 — движение вправо, 2 — движение вниз и 3 — движение влево. 
Наблюдение представлено числом, которое формируется на основе координат по формуле: 
«текущий индекс строки» × «количество столбцов» + «текущий индекс столбца», где и строка, 
и столбец начинаются с 0. За каждый выполненный «безопасный» шаг, агент получает награ-
ду в размере –1 балл. При попадании в состояние, входящее в «обрыв», генерируется награда 
–100 баллов с завершением эпизода. Максимально допустимое суммарное вознаграждение за 
эпизод равно –13. Исходя из полученных данных о характеристиках соответствующих сред, 
выходной вектор действий имел размерность 4, а вектора наблюдения составила величину, 
равную 6. Поскольку CliffWalking-v0 генерирует состояние в виде числа, было принято реше-
ние о переводе результата в вектор двоичного кода. В результате, поскольку 48 (целевое состо-
яние среды) в двоичной форме равно 110000, состоящему из 6 разрядов, а наблюдение в среде 
CartPole-v0 составляет вектор из 4 элементов, то исходя из критерия максимума, размерность 
вектора состояния была выбрана равной 6. CartPole-v0 обладает меньшим количеством воз-
можных действий и размерностью вектора наблюдений, по сравнению с CliffWalking-v0. Для 
выбора действия, в среде маятника, задействованы первые два разряда, а вектор наблюдения 
слева расширен нулевыми значениями. Стоит отметить, что для каждой из эксперименталь-
ных сред, агент использовал алгоритм глубокого обучения с подкреплением исполнитель-кри-
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тик. Тестовая нейронная сеть агента состояла из двух полносвязных сетей — одна для испол-
нителей, а вторая для критиков. При проведении экспериментов использовались два случая: 
разделённые группы и группы с боковыми связями. Каждая нейронная сеть группы состояла 
из двух скрытых слоёв по 128 нейронов в каждом. За управление выбором группы по коду от-
вечали два переключающих нейрона, для каждой из сетей. Группе, аппроксимирующей стра-
тегию для среды CliffWalking-v0, присвоен код 00. Для CartPole-v0 — 01. Программная ёмкость 
итоговых сетей равна 2, поскольку тестирование производится для двух стратегий в контексте 
одного агента. Архитектура тестовых агентов представлена на рис. 3.

Каждый из тестовых агентов настраивался на одинаковых значениях параметров: скорость 
обучения — 0.0005, коэффициент обесценивания — 0.0005, количество эпизодов — 2000. В ре-
зультате, обученные сети продемонстрировали полную сходимость стратегий к максимально 
допустимым пороговым значениям, соответствующим каждой из тестовых сред. Благодаря 
применению предлагаемой архитектуры с использованием переключающих нейронов, была 
обеспечена независимость обучения тестовых групп, что позволило ликвидировать эффект 
«забывания» и реализовать возможность выбора программ по соответствующему ей коду, что 
полностью соответствует поставленной цели построения многофункционального агента. 

Заключение

В результате выполнения данной работы был реализован многофункциональный агент, 
основанный на алгоритме глубокого обучения с подкреплением, способный аппроксимиро-
вать несколько стратегий принятия решений без потери знаний, с возможностью управле-
ния выбором требуемой стратегии. Представленная реализация, основанная на ранее предло-
женной архитектуре нейронной сети с использованием переключающих нейронов, согласно 
полученным экспериментальным данным, обеспечивает построение требуемого агента как 
на основании не связанных групп, так и с использованием боковых связей, при этом решая 
задачу маркирования столбцов (политик), которая не решена в статье первоисточнике, по-
свящённой прогрессивным нейронным сетям. Использование связей позволяет унаследовать 
все преимущества прогрессивных нейронных сетей в контексте предложенной организации 

Рис. 3. Архитектура тестового агента
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агента. Предложенная организация независима от глубокого алгоритма обучения с подкре-
плением и универсальна для каждого из них. Результаты тестирования продемонстрировали 
эффективность тестовых многофункциональных агентов. Полученные в данной работе ре-
зультаты могут применяться как к задачам построения искусственного интеллекта, так и для 
интеллектуальной робототехники. Далее, представленный в соответствующем исследовании 
многофункциональный агент будет использован для реализации основной цели — построе-
ние системы управления локомоцией шагающего робота, основанного на глубоком обучении 
с подкреплением. 
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УДК 004.912

СИНТЕЗ ИНТУИЦИОНИСТСКИХ НЕЧЁТКИХ МНОЖЕСТВ И ВЕКТОРНЫХ 
ПРЕДСТАВЛЕНИЙ СЛОВ В ЗАДАЧЕ НЕЧЁТКОГО ПОИСКА

Воронежский государственный университет

Г. Д. Коваль, Т. М. Леденёва

Аннотация. В статье рассмотрена проблема повышения эффективности нечёткого по-
иска в текстовых документах. Предложен гибридный алгоритм на основе интуициони-
стских нечётких множеств и семантических векторных представлений. Разработана 
архитектура интеграции двух подходов, где синтаксические различия обрабатываются 
с помощью расстояния Левенштейна и интуиционистских нечётких множеств, а семан-
тическая близость оценивается через векторные представления Word2Vec. Полученные 
результаты могут быть использованы при разработке информационно-поисковых систем 
для работы с неструктурированными текстовыми данными.
Ключевые слова: нечёткий поиск, интуиционистские нечёткие множества, семантиче-
ские меры, гибридный алгоритм, расстояние Левенштейна, векторные представления 
слов, Word2Vec, обработка естественного языка, информационно-поисковые системы, 
информационный поиск.

Введение

Современные информационно-поисковые системы сталкиваются с проблемой эффектив-
ного поиска в условиях неопределённости, вызванной орфографическими ошибками и смыс-
ловыми различиями в формулировках.

Существующие подходы к нечёткому поиску можно разделить на синтаксические (рассто-
яние Левенштейна [1]) и семантические (векторные представления [2]). Первые эффективно 
обрабатывают опечатки, но игнорируют смысловую близость, тогда как вторые решают про-
блему синонимии, но чувствительны к орфографическим ошибкам.

В работе предлагается гибридный алгоритм, сочетающий аппарат интуиционистских 
нечётких множеств [3] и семантических мер. Интуиционистские нечёткие множества (ИНМ) 
[4] позволяют одновременно оценивать степень принадлежности и непринадлежности эле-
ментов, обеспечивая более гибкое моделирование неопределённости.

Целью исследования является разработка архитектуры гибридного алгоритма, формали-
зация преобразования семантических мер в функции принадлежности/непринадлежности. 
Научная новизна заключается в создании метода, учитывающего как синтаксические, так и 
семантические аспекты схожести текстов.

1. Обзор методов нечёткого поиска

Эффективность информационно-поисковых систем определяется качеством реализации 
алгоритмов нечёткого поиска. Существующие подходы можно разделить на три основные ка-
тегории: синтаксические, теоретико-множественные и семантические.

Синтаксические подходы основаны на оценке формального сходства строк без учёта их 
смыслового содержания. Наиболее распространённым методом является расстояние Левен-
штейна, которое определяет минимальное количество операций вставки, удаления и замены 
символов для преобразования одной строки в другую [5]. К достоинствам этого метода отно-
сятся простота реализации и эффективность обработки орфографических ошибок. Однако 
он обладает существенными ограничениями: чувствительностью к перестановкам слов, не-
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способностью учитывать семантическую близость и завышенной оценкой различий для строк 
разной длины.

Альтернативными синтаксическими подходами являются метод N-грамм [6], основанный 
на анализе совпадений последовательностей символов, и алгоритм Джаро-Винклера [7], учи-
тывающий общие префиксы. Эти методы показывают хорошие результаты при обработке 
опечаток, но также не решают проблему смысловой близости.

Одним из представителей теоретико-множественных подходов является теория нечётких 
множеств Заде [8] предоставляет аппарат для работы с частичной принадлежностью элемен-
тов к множествам. В контексте поиска это позволяет оценивать степень соответствия доку-
мента запросу в диапазоне от 0 до 1. Интуиционистские нечёткие множества [9] расширяют 
этот аппарат за счёт введения степени непринадлежности, что позволяет более адекватно мо-
делировать ситуации неопределённости.

В работах [10, 11] показана эффективность применения ИНМ для задач классификации и 
принятия решений. Однако их использование в информационном поиске ограничено отсут-
ствием интеграции с семантическими методами.

С развитием обработки естественного языка получили распространение семантические 
методы, основанные на векторных представлениях слов. Модели Word2Vec [12], GloVe [13] 
и BERT [14] позволяют отображать слова в векторное пространство, где семантическая бли-
зость соответствует близости векторов. Это позволяет учитывать синонимию, тематическую 
связанность и контекстное использование слов.

Семантические методы демонстрируют высокую эффективность при работе с смысловы-
ми запросами, но уязвимы к орфографическим ошибкам и требуют значительных вычисли-
тельных ресурсов для обучения моделей.

Проведённый анализ показывает, что каждый из рассмотренных подходов решает отдель-
ные аспекты проблемы нечёткого поиска, но не обеспечивает комплексного решения. Син-
таксические методы эффективны для обработки ошибок, но игнорируют семантику; теоре-
тико-множественные подходы обеспечивают гибкое моделирование неопределённости, но 
не учитывают смысловую близость; семантические методы определяют смысловые связи, но 
чувствительны к орфографии. Это обосновывает необходимость разработки гибридного ал-
горитма, интегрирующего преимущества всех трёх подходов.

2. Теоретическая основа

Интуиционистские нечёткие множества (ИНМ) представляют собой расширение теории 
нечётких множеств Заде, введённое Атанасовым [4]. В отличие от классических нечётких мно-
жеств, где элемент характеризуется только функцией принадлежности [0,1],Aµ ∈  в ИНМ до-
бавляется функция непринадлежности [0,1],Aν ∈  при этом для любого элемента x  выполня-
ется условие:

	 0 ( ) ( ) 1.A Ax xµ ν≤ + ≤
Величина ( ) 1 ( ) ( )A A Ax x xπ µ ν= − −  интерпретируется как степень неопределённости или 

интуиционистский индекс [15].
Для ИНМ определены основные операции:

{ }/ ( ), ( ) ,A AA x x xν µ⇔
( ) ( ) ( )( ){ }( ), ( ) / max ( ), ( ) ,min ( ), ( ) ,A B A BA B S A x B x x x x x xµ µ ν ν∪ = =
( ) ( ) ( )( ){ }( ), ( ) / min ( ), ( ) ,max ( ), ( ) .A B A BA B T A x B x x x x x xµ µ ν ν∩ = =

В контексте задачи нечёткого поиска ИНМ позволяют одновременно оценивать степень 
соответствия и несоответствия документа поисковому запросу, что особенно важно при ра-
боте с частично релевантными документами.



294

На основе предыдущих исследований [7] вместо классического расстояния Левенштейна 
1 2( , )D t t  используется его модифицированная версия mod 1 2( , )D t t  для работы с ИНМ:

	 1 2
mod 1 2

1 2

( , )( , ) ,
max( ( ), ( ))

D t tD t t
len t len t

= 	 (1.1)

	 1 2 mod 1 2( , ) 1 ( , ),D t t D t tµ = − 	 (1.2)

	 1 2
1 2 mod 1 2

1 2

( ) ( )
( , ) ( , ) ,

max( ( ), ( ))D

len t len t
t t D t t

len t len t
ν β

 − 
= − ⋅ 
 

	 (1.3)

	 1 2 1 2 1 2( , ) 1 ( , ) ( , ),D D Dt t t t t tπ µ ν= − − 	 (1.4)
где [0,1]β ∈  — коэффициент, регулирующий влияние синтаксических различий на степень 
непринадлежности.

Семантические методы поиска основаны на векторных представлениях слов, которые по-
зволяют отображать термины в многомерное пространство, где семантическая близость соот-
ветствует близости векторов.

Модель Word2Vec [12] обучается для предсказания слов по контексту (архитектура CBOW) 
или контекста по слову (архитектура Skip-gram). После обучения получаются векторные представ-
ления слов, где семантически близкие слова располагаются в пространстве рядом друг с другом.

Для оценки семантической близости между терминами (словами) 1t  и 2t  используется ко-
синусная мера:

	 1 2
1 2

1 2

( , ) ,T Tsim t t
T T
−

=
⋅

где 1T  и 2T  — векторные представления терминов 1t  и 2t  соответственно.
Для интеграции семантических мер в аппарат ИНМ предложено следующее преобразование:
	 ( )1 2 1 2( , ) max 0, ( , ) ,s t t sim t tµ = 	 (2.1)

	 ( )1 2 1 2 1 2( , ) 1 ( , ) 1 ( , ) ,s st t t t sim t tν µ α= − − − 	 (2.2)
	 1 2 1 2 1 2( , ) 1 ( , ) ( , ),s s st t t t t tπ µ ν= − − 	 (2.3)

где [0,1]α ∈  — коэффициент неопределённости, позволяющий регулировать степень неуве-
ренности в оценке. Здесь 1 2( , )s t tπ  представляет собой степень неопределённости в оценке сте-
пени семантического сходства. Данное преобразование обеспечивает согласованность семан-
тической меры с аксиоматикой ИНМ.

3. Архитектура гибридного алгоритма

Предлагаемый гибридный алгоритм нечёткого поиска основан на параллельной обработке 
синтаксических и семантических характеристик текстовых данных с последующей интеграци-
ей результатов в рамках аппарата интуиционистских нечётких множеств. Архитектура алго-
ритма включает три основных модуля (рис. 1).

Модуль синтаксического анализа осуществляет предобработку текстовых данных и вычис-
ление синтаксической близости на основе модифицированного расстояния Левенштейна. На 
этапе предобработки выполняются следующие операции:

1) нормализация регистра символов,
2) удаление стоп-слов и знаков препинания, 
3) лемматизация терминов,
4) формирование n-грамм для устойчивых словосочетаний.
Для каждой пары «термин запроса – термин документа» вычисляется мера синтаксическо-

го сходства на основе модифицированного расстояния Левенштейна, которая преобразуется в 
функции принадлежности и непринадлежности ИНМ согласно формулам (1.1)–(1.4).
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Модуль семантического анализа реализует оценку смысловой близости терминов с исполь-
зованием предобученных векторных моделей Word2Vec. Для работы требуется:

1) предобученная векторная модель на релевантной текстовой коллекции,
2) механизм обработки “out-of-vocabulary” слов через анализ подстрок,
3) вычисление косинусного сходства между векторными представлениями,
4) результаты семантического анализа преобразуются в функции принадлежности и не-

принадлежности ИНМ согласно формулам (2.1)–(2.3).
Модуль интеграции и ранжирования является ключевым модулем алгоритма и осущест-

вляет объединение результатов синтаксического и семантического анализа. Пусть 
1 3{ , ,..., }mREQ req req req=  — поисковый запрос, представленный как множество m терминов, а 

1 3{ , ,..., }nDOC doc doc doc=  — коллекция из n документов. Для каждого термина запроса ireq  и 
документа коллекции jdoc  формируется результирующее ИНМ на основе операции объединения:

	 ( , ) ( , ) ( , ),i j i j i jA req doc A req doc A req doc= ∪ðåç ñèíò ñåì 	 (3.1)
где Añèíò  — ИНМ, полученное на основе синтаксического анализа, а Añåì  — ИНМ, полученное 
на основе семантического анализа.

Для оценки релевантности документа jdoc  запросу ireq  используется комбинированная 
метрика:

	 ( , ) ( , ) ( , ) ( , ) ,
i

j i i j i j i j
req REQ

R doc req w req doc w req doc w req docµ ν πµ ν π
∈

 = ⋅ − ⋅ + ⋅ ∑ ðåç ðåç ðåç 	 (3.2)

где ,wµ  ,wν  wπ  — весовые коэффициенты, регулирующие влияние соответственно принад-
лежности/непринадлежности и неопределённости на итоговую оценку релевантности. При 
этом коэффициенты должны удовлетворять следующему условию: 1.w w wµ ν π+ + =

Рис. 1. Архитектура гибридного алгоритма
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	 min

max min

( , ) ( , )
( , ) ,

( , ) ( , )
j i j i

norm j i
j i j i

R doc req R doc req
R doc req

R doc req R doc req
−

=
−

	 (3.3)

где min ( , ) ( ),j iR doc req m wν= ⋅ −  max ( , ) max( , ).j iR doc req m w wµ π= ⋅
Для демонстрации работы предложенного гибридного алгоритма рассмотрим поэтапно 

пример поиска документа по запросу в условиях нечёткого соответствия. Пусть дан документ 
DOC: «современная система автоматического обучения алгоритмов» и поисковый запрос REQ: 
«машинное обучение».

Этап 1. Предобработка текста. После нормализации, лемматизации и удаления стоп-
слов имеем:

Термины запроса: [машинный, обучение].
Термины документа: [современный, система, автоматический, обучение, алгоритм].
Этап 2. Синтаксический анализ. Используем расстояние Левенштейна с параметром 
0.9α =  и формулы (1.1)–(1.4) для синтаксического анализа (табл. 1).

Таблица 1
Результаты синтаксического анализа

Термин запроса Термин документа modD µñèíò ν ñèíò

машинное современная 0.727 0.273 0.073
машинное система 0.875 0.125 0.088
машинное автоматического 0.769 0.231 0.077
машинное обучения 0.750 0.250 0.075
машинное алгоритмов 0.800 0.200 0.080
обучение современная 0.818 0.182 0.082
обучение система 0.875 0.125 0.088
обучение автоматического 0.846 0.154 0.085
обучение обучения 0.125 0.875 0.013
обучение алгоритмов 0.800 0.200 0.080

Этап 3. Семантический анализ. Используем векторные представления Word2Vec и коси-
нусное сходство с параметром 0.1β =  и по формулам (2.1)–(2.3) для семантического анализа 
(табл. 2).

Таблица 2
Результаты семантического анализа

Термин запроса Термин документа sim µñåì ν ñåì

машинное современная 0.200 0.200 0.080
машинное система 0.100 0.100 0.090
машинное автоматического 0.300 0.300 0.070
машинное обучения 0.400 0.400 0.060
машинное алгоритмов 0.200 0.200 0.080
обучение современная 0.100 0.100 0.090
обучение система 0.100 0.100 0.090
обучение автоматического 0.200 0.200 0.080
обучение обучения 0.900 0.900 0.010
обучение алгоритмов 0.300 0.300 0.070
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Этап 4. Объединение ИНМ. Объединяем синтаксические и семантические ИНМ для ка-
ждой пары терминов по формуле (3.1). Результаты представлены в табл. 3.

Таблица 3
Результаты объединения ИНМ

Термин запроса Термин документа µðåç ν ðåç π ðåç

машинное современная 0.273 0.073 0.654
машинное система 0.125 0.088 0.787
машинное автоматического 0.300 0.070 0.630
машинное обучения 0.400 0.060 0.540
машинное алгоритмов 0.200 0.080 0.720
обучение современная 0.182 0.082 0.736
обучение система 0.125 0.088 0.787
обучение автоматического 0.200 0.080 0.720
обучение обучения 0.900 0.010 0.090
обучение алгоритмов 0.300 0.070 0.630

Этап 5. Расчёт релевантности. Агрегируем значения по лучшим парам для каждого тер-
мина запроса.

Для «машинное» имеем: 0.400,µ =ðåç  0.060,ν =ðåç  0.540.π =ðåç

Для «обучение» имеем: 0.900,µ =ðåç  0.010,ν =ðåç  0.090.π =ðåç

При весовых коэффициентах 0.7,wµ =  0.2,wν =  0.1wπ =  вычисляем релевантность для 
каждого термина запроса, а затем суммарную релевантность всего запроса.

( , ) 0 7 0 400 0 2 0 060 0 1 0 540 0.322,R DOC . . . . . .= ⋅ − ⋅ + ⋅ =ìàøèííîå« »
( , ) 0 7 0 900 0 2 0 010 0 1 0 090 0 637.R DOC . . . . . . .= ⋅ − ⋅ + ⋅ =îáó÷åíèå« »
( ) 0 322 0 637 0 959.R DOC,REQ .  + .  = .=

Нормализуем полученную релевантность ( 2):m =

min 2 ( 0.2) 0.4,R = ⋅ − = −

max 2 max(0.7,0.1) 1 4,R =  .⋅ =
0.959 0.4( , ) 0.755 0.76.
1.4 0.4normR DOC REQ +

= = ≈
+

Документ DOC  имеет нормализованную релевантность 0.755 (76 %) по отношению к за-
просу ,REQ  что указывает на высокую степень соответствия.

Заключение

В работе предложен и теоретически обоснован гибридный алгоритм нечёткого поиска, 
интегрирующий аппарат интуиционистских нечётких множеств и семантических мер. Разра-
ботана архитектура системы для параллельной обработки синтаксических и семантических 
характеристик текстовых данных. Формализована математическая модель преобразования 
семантических мер близости и модифицированного расстояния Левенштейна в функции при-
надлежности и непринадлежности интуиционистских нечётких множеств.

Научная новизна работы заключается в разработке метода интеграции синтаксических и 
семантических подходов с использованием аппарата интуиционистских множеств для ком-
плексной оценки релевантности документов.
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Перспективы дальнейших исследований включают экспериментальную верификацию ал-
горитма на крупных текстовых коллекциях, интеграцию с современными нейросетевыми мо-
делями, разработку адаптивных механизмов настройки параметров и оптимизацию вычисли-
тельной эффективности алгоритма.
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УДК 519.688 + 372.851 + 004.428.4

ЭКСПЕРИМЕНТ ПО ПРИМЕНЕНИЮ НЕЙРОСЕТЕЙ ДЛЯ НАПИСАНИЯ 
ПРОГРАММНОГО КОДА, ГЕНЕРИРУЮЩЕГО ЗАДАЧИ ПО МАТЕМАТИКЕ

Воронежский государственный университет

Е. Ю. Колесникова

Аннотация. В работе исследуется применение нейросетевой модели Qwen для генерации 
JavaScript-кода в образовательном проекте «Час ЕГЭ», предназначенном для автоматиче-
ского составления задач ЕГЭ и ОГЭ по математике. Вместо прямой генерации формули-
ровок задач нейросеть используется как инструмент разработки, создавая шаблоны (код), 
которые затем проверяются и дорабатываются программистом. Подход сочетает высо-
кую производительность нейросети с надёжностью детерминированных алгоритмов, 
позволяет сократить время разработки одного шаблона с 45–60 минут до 10–15 минут 
и обеспечивает работу платформы оффлайн. Показано, что нейросеть эффективна как 
«умный ассистент», но не заменяет человека в вопросах логики и валидации. Результаты 
демонстрируют перспективность комбинированного подхода для создания открытых и 
доступных образовательных технологий.
Ключевые слова: программная генерация задач, ЕГЭ по математике, ОГЭ по математике, 
JavaScript, нейросети, Qwen, автоматизация образования, детерминированные алгорит-
мы, генерация кода, образовательные технологии, Open Source, искусственный интеллект 
в образовании.

Введение

В современном образовательном пространстве всё большую роль играет персонализация и 
автоматизация процесса подготовки к экзаменам. Особенно остро стоит проблема дефицита 
качественных, разнообразных и несписываемых заданий для подготовки к ЕГЭ и ОГЭ. Плат-
формы наподобие sdamgia.ru [1, 2], несмотря на свою надёжность, ограничены количеством 
задач, их обновление относительно банка ФИПИ [6, 7] происходит с задержкой. В связи с этим 
был создан открытый проект «Час ЕГЭ» [9–11] — инструмент, предназначенный как для уче-
ников, так и для педагогов, позволяющий генерировать большое количество уникальных за-
дач, являющимися вариациями заданий с реальных экзаменов. Проект не требует облачных 
ресурсов, работает локально, использует простой JavaScript и не полагается на внешние API, 
что делает его доступным даже на маломощных ЭВМ и в условиях ограниченного интернета. 
В работе [4] «Час ЕГЭ» используется для сбора анонимной статистики об успешности различ-
ных типов задач.

Используемые технологии в проекте:
1. Язык программирования: JavaScript
2. Система контроля версий: Git
3. Сборка проекта: Node.js и Grunt
4. Пакетный менеджер: npm
5. Платформа для совместной разработки: GitHub [8]
6. Лицензия исходного кода: GNU GPLv3
Важнейшие внешние библиотеки:
1. MathJax: для корректного отображения математических формул в LaTeX.
2. mathjs и nerdamer: для работы с символьной алгеброй и вычислений.
3. jQuery: для упрощения некоторых элементов интерфейса.
4. cubic-spline: для построения сплайнов и гладких кривых.
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Автор уже имела опыт разработки шаблонов для «Час-ЕГЭ» [12]. Однако, с развитием ней-
росетевых моделей возникает естественный вопрос: «Почему не использовать их для генера-
ции задач?» — ведь нейросети умеют воспроизводить стили, формулировки и даже решать 
задачи. С другой стороны, несмотря на прогресс в области искусственного интеллекта, клас-
сические императивные алгоритмы остаются незаменимыми, так как они требуют минималь-
ных вычислительных ресурсов, не дают внезапных сбоев (нейросеть может выдать бессмыс-
ленный или логически неверный текст), гарантируют детерминированность: при одних и тех 
же входных данных — одинаковый, проверяемый результат.

Более того, «Час ЕГЭ» работает оффлайн, а это критично для школ с низким уровнем циф-
ровой инфраструктуры.

Таким образом, выбирается комбинация из подходов: не заменять алгоритмы нейросетями, 
а использовать нейросети для генерации этих алгоритмов. То есть нейросеть пишет на JavaScript 
код для самых простых задач для «Час ЕГЭ», опираясь на образцы уже написанных шаблонов. 
Программист же проверяет, что выдала ему нейросеть, и вносит необходимые правки. 

Этот подход объединяет гибкость ИИ и надёжность программного кода.
В данной работе исследуется, насколько эффективно можно применять нейросетевые мо-

дели для автоматической генерации императивных шаблонов задач — и как это меняет про-
цесс разработки образовательного контента.

1. Методология: от анализа задач к генерации кода

Выделим класс задач, на которых будем ставить эксперимент. В этот класс вошли задачи на 
расчёты по предоставленным формулам: ЕГЭ профильного уровня — № 9, ЕГЭ базового уров-
ня — № 4, ОГЭ — № 12. Для них характерны следующие общие закономерности:

1. Формула в LaTeX — обязательный элемент формулировки [5].
2. Случайные параметры — генерируются с жёсткими ограничениями.
3. Логика валидации — genAssert гарантирует отсутствие дубликатов, деления на ноль, не-

корректных значений.
Эти шаблоны оказались достаточно регулярными, чтобы быть моделируемыми нейросетью.
В качестве ядра для генерации кода была выбрана нейросеть Qwen (Qwen3-Max) [3] по 

следующим причинам:
1. Бесплатность: не требует подписки.
2. Скорость: отвечает за 1–3 секунды.
3. Поддержка JavaScript: отлично понимает синтаксис, функции типа sl(), chislitlx(), 

coordAxis_drawAuto.
4. Русскоязычная адаптация: корректно обрабатывает русские термины, склонения, мате-

матические формулировки.
Был создан набор из 12 шаблонов задач — от простых («найти длину отрезка») до сложных 

(«вычеркнуть цифры, чтобы число делилось на 30»). Каждый шаблон включал:
1. Пример текста задачи,
2. Пример кода на JavaScript (реальный листинг из «Час ЕГЭ»),
3. Описание используемых функций (sl(), sklonlxkand(), genAssert(), .textrndfrac() и т. д.),
4. Правила валидации (например: «не допускать a b= », «всегда 6 магазинов»).
Пример инструкции для Qwen:
составь код для задач такого типа:
Закон Менделеева — Клапейрона можно записать в виде ,PV RTν=  где P  — давление 

(в паскалях), V  — объем (в м³), ν  — количество вещества (в молях), T  — температура 
(в кельвинах), а R  — универсальная газовая постоянная, равная 8,31 Дж/(К·моль). Пользуясь 
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этой формулой, найдите температуру T  (в кельвинах), если 68,2ν =  моль, 37782,8P =  Па, 
6V =  м³.

Закон Менделеева — Клапейрона можно записать в виде ,PV RTν=  где P  — давление (в 
паскалях), V  — объем (в м³), ν  — количество вещества (в молях), T  — температура (в кельви-
нах), а R  — универсальная газовая постоянная, равная 8,31 Дж/(К·моль). Пользуясь этой фор-
мулой, найдите количество вещества ν  (в молях), если 700T =  K, 20941,2P =  Па, 9,5V =  м³.

Ответ нейросети Qwen3-Max-Preview:
Отлично! Ты хочешь создать генератор задач на закон Менделеева — Клапейрона с воз-

можностью находить разные величины ( , , , )T P Vν  через preference, с валидацией чисел, скло-
нениями, рандомизацией и ключом из sdamgia.ru.

Вот полный, готовый, надёжный код с комментариями — всё по лучшим практикам, как в 
твоих примерах:
(function () {
	 'use strict';
	 retryWhileError(function () {
		  NAinfo.requireApiVersion(0, 2);

		  let key = '338296';
	 	 let preference = ['findT', 'findNu', 'findP', 'findV'];
	 	 let rand = getSelectedPreferenceFromList(key, preference);

	 	 let the_orderToFind = decor.orderToFind.iz();

	 	 // Константы и параметры
		  let R = 8.31;
	 	 let nu = sl(10, 100, 0.2);   // количество вещества
	 	 let T = sl(100, 1500, 50);   // температура
	 	 let V = sl(1, 20, 0.1);      // объём
	 	 let P = (nu * R * T) / V;    // давление

	 	 // Валидация: не более 4 знаков после запятой
	 	 genAssertAlmostInteger(10000 * P, 'Давление должно иметь не более 4 знаков после
запятой');

	 	 // Формируем массив всех параметров: [T, ν, P, V]
	 	 let symbols = ['T', '\\nu', 'P', 'V'];
	 	 let values = [T, nu, P, V];
	 	 let units = ['К', 'моль', 'Па', 'м$^3$'];
	 	 let names = ['температуру $T$', 'количество вещества $\\nu$', 'давление $P$', 'объём 
$V$'];

	 	 // Убираем искомый параметр из «дано»
	 	 let givenParts = [];
	 	 for (let i = 0; i < 4; i++) {
	 	 	 if (i !== rand) {
	 	 	 	 givenParts.push('$' + symbols[i] + ' = ' + values[i] + '$ ' + units[i]);
			   }
		  }
	 	 let givenText = givenParts.join(', ');

	 	 // Собираем задачу
	 	 NAtask.setTask({
	 	 	 text: 'Закон Менделеева-Клапейрона можно записать в виде $PV = \\nu RT$, где ' +
	 	 	 	 '$P$ — давление (в паскалях), $V$ — объём (в м$^3$), $\\nu$ — количество
вещества (в молях), ' +
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	 	 	 	 '$T$ — температура (в кельвинах), а $R$ — универсальная газовая постоянная, рав-
ная $8{,}31$ Дж/(К·моль). ' +
	 	 	 	 'Пользуясь этой формулой, ' + the_orderToFind + ' ' + names[rand] + ', если ' + 
givenText + '.',
	 	 	 answers: values[rand],
	 	 	 preference: preference,
		  });

	 	 NAtask.modifiers.allDecimalsToStandard();

	 }, 20000);
})();
//zer00player
//https://oge.sdamgia.ru/test?likes=338296

Единственное, что пришлось изменить программисту — это сделать P  меньше, чем 100 000, 
чтобы повысить вариативность сформированных задач. 

Примеры сгенерированного задания (шаблон zdn/matoge2024/12/338296.js): Закон Менде-
леева — Клапейрона можно записать в виде ,PV RTν=  где P  — давление (в паскалях), V  — 
объем (в м³), ν  — количество вещества (в молях), T — температура (в кельвинах), а R  — уни-
версальная газовая постоянная, равная 8,31 Дж/(К·моль). Пользуясь этой формулой, 
вычислите давление ,P  если 16,5V =  м³, 550T =  K, 59,8ν =  моль.

Ответ: 16564,6.
Закон Менделеева — Клапейрона можно записать в виде ,PV RTν=  где P  — давление (в 

паскалях), V  — объем (в м³), ν  — количество вещества (в молях), T  — температура (в кельви-
нах), а R  — универсальная газовая постоянная, равная 8,31 Дж/(К·моль). Пользуясь этой фор-
мулой, найдите количество вещества ν  (в молях), если 750T =  K, 40386,6P =  Па, 10V =  м³.

Ответ: 64,8.

2. Выводы: комбинация подходов эффективна

1. Экономия времени: написание одного шаблона без использования нейросети занимает 
где-то 45–60 минут, но если использовать её, то занимает минимум 3–5 минут на настройку и 
10–15 минут на правки. 

2. Сохранение надёжности: код, сгенерированный Qwen, всегда исполняем — он не «дума-
ет», а копирует структуру.

3. Локальность и доступность: «Час ЕГЭ» способен работать на маломощной ЭВМ в усло-
виях ограничения или отсутствия доступа к интернету.

4. Гибкость: можно быстро адаптировать под новые типы задач — просто добавить новый 
шаблон.

5. Код, сгенерированный нейросетью, содержит валидные формулы в формате LaTeX [5].
Несмотря на успехи, Qwen не способна самостоятельно обеспечивать выполнение ОДЗ в 

выражениях, содержащих логарифмы, не может избегать дубликатов без явного genAssert и 
т. д. Таким образом, она не заменяет программиста, а является лишь его ассистентом.

Заключение

Было принято решение отказаться от концепции, при которой нейросеть становилась бы 
неотъемлемой внутренней частью системы генерации задач. Выбранная вместо этого комби-
нация из императивного подхода и нейросетевой помощи сохраняет надёжность и детерми-
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нированность, обеспечивает доступность и локальность и резко сокращает трудозатраты пре-
подавателя и программиста.
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УДК 004.8

ЭФФЕКТИВНОСТЬ МНОГОСЛОЙНОГО ПЕРЦЕПТРОНА 
В ЗАДАЧЕ КЛАССИФИКАЦИИ ЭМОЦИОНАЛЬНЫХ СОСТОЯНИЙ 

НА ОСНОВЕ АКУСТИЧЕСКИХ ПРИЗНАКОВ РЕЧИ

Воронежский государственный университет

Д. С. Конюхова

Аннотация. В статье исследуется задача автоматического распознавания эмоций по ре-
чевому сигналу с использованием искусственной нейронной сети типа многослойный 
перцептрон (MLP). Рассматривается процесс построения признакового пространства на 
основе акустических характеристик речи, таких как логарифмированные энергии филь-
трованных банков, спектральный центроид, спад и скорость пересечения нуля, с после-
дующей их статистической агрегацией. В качестве исходных данных использовалась база 
эмоциональной речи RAVDESS. Модель MLP достигла общей точности 0.81 и сбаланси-
рованной F1-меры 0.82. Особое внимание уделено анализу ошибок модели для различных 
эмоций, что выявило ее сильные стороны в распознавании состояний «спокойствие» и 
«нейтральное» и позволило определить направления для дальнейшей оптимизации.
Ключевые слова: распознавание эмоций, многослойный перцептрон, обработка аудио-
сигналов, акустические признаки, классификация, RAVDESS.

Введение

Современные системы человеко-машинного взаимодействия все чаще требуют способно-
сти понимать не только смысл высказывания, но и его эмоциональную окраску. Задача ав-
томатического распознавания эмоций по речи (Speech Emotion Recognition, SER) является 
ключевой для создания более естественных и отзывчивых интерфейсов, находя применение в 
колл-центрах, психологии, безопасности и мультимедиа.

Сложность данной задачи заключается в том, что эмоции выражаются через паралингви-
стические особенности сигнала — изменения высоты тона, тембра, громкости и ритма, кото-
рые необходимо количественно описать и корректно интерпретировать.

Целью данной работы является исследование возможностей многослойного перцептрона 
(MLP) в решении задачи классификации эмоциональных состояний на основе комплексного 
набора акустических признаков.

1. Методология исследования

1.1. Данные

В работе использовалась общедоступная база данных RAVDESS (Ryerson Audio-Visual Database 
of Emotional Speech and Song), содержащая высококачественные аудиозаписи профессиональ-
ных актеров, выражающих шесть базовых эмоций: нейтральное, спокойствие, радость, грусть, 
злость и страх. Данный датасет является стандартным бенчмарком для задач SER.

1.2. Извлечение признаков

Для преобразования речевого сигнала в вектор признаков применялся следующий подход. 
Каждая аудиозапись обрабатывалась с частотой дискретизации 22.05 кГц. На первом этапе 
извлекались низкоуровневые акустические дескрипторы:
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• Логарифмированные энергии фильтрованных банков (40 признаков на кадр) отражают 
распределение энергии по частотным полосам мел-шкалы, что тесно связано с восприятием 
тембра;

• Спектральный центроид характеризует «центр тяжести» спектра и яркость звука;
• Спектральный спад показывает частоту, ниже которой сосредоточена основная спек-

тральная мощность;
• Скорость пересечения нуля (ZCR) — индикатор частоты основного тона и шумоподоб-

ности сигнала.
Для перехода от последовательности кадров к фиксированному вектору, описывающему 

всю запись целиком, для каждого из 43 первичных признаков (40 энергий фильтров и 3 спек-
тральных признака) вычислялись семь статистических функций: среднее значение, стан-
дартное отклонение, минимум, максимум, медиана, коэффициент асимметрии и коэффици-
ент эксцесса. Таким образом, итоговая размерность признакового пространства составила 
301 признак. Перед обучением все признаки были стандартизированы.

Качество и релевантность сформированного признакового пространства оценивались кос-
венными методами через анализ метрик качества классификации. Высокие показатели точно-
сти (0.81) и F1-меры (0.82) свидетельствуют о достаточной информативности используемых 
признаков для решения задачи распознавания эмоций. Однако анализ ошибок классифика-
ции выявил области для потенциального улучшения признакового пространства, в частности 
для различения акустически близких эмоций «грусть», «радость» и «страх».

1.3. Архитектура модели и обучения

В качестве классификатора использовался многослойный перцептрон (MLP) — класс ис-
кусственных нейронных сетей прямого распространения. MLP способен аппроксимировать 
сложные нелинейные зависимости между признаками и целевыми классами, что делает его 
подходящим для задач распознавания эмоций.

Для оценки качества модели и обеспечения надежности результатов применялась 5-крат-
ная кросс-валидация. Модель оценивалась с помощью набора метрик, включающего общую 
точность (Accuracy), точность (Precision), полноту (Recall), F1-меру и площадь под ROC-кри-
вой (AUC).

Архитектура многослойного перцептрона оптимизировалась методом случайного поиска 
по сетке гиперпараметров (RandomizedSearchCV) с использованием библиотеки scikit-learn. 
Пространство поиска включало различные конфигурации скрытых слоев: однослойные ар-
хитектуры с 128 нейронами, двухслойные с комбинациями 128-64 и 256-128 нейронов, а так-
же трехслойную конфигурацию 128-64-32. Для функций активации тестировались варианты 
ReLU, гиперболического тангенса и логистической функции.

Предобработка данных осуществлялась в виде последовательного пайплайна, включавше-
го стандартизацию признаков, уменьшение размерности методом главных компонент (PCA) 
с сохранением 95 % дисперсии исходных данных, и непосредственно классификацию с помо-
щью MLP. Такой подход позволил сохранить наиболее информативные компоненты призна-
кового пространства и повысить эффективность обучения модели.

Для обеспечения воспроизводимости результатов использовался фиксированный random_
state = 42. Модель обучалась с применением ранней остановки (early stopping) при максималь-
ном количестве итераций 500, что предотвращало переобучение и обеспечивало оптималь-
ную сходимость алгоритма.
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2. Результаты

Обученная модель MLP продемонстрировала высокую эффективность. Общая точность 
классификации на тестовой выборке составила 0.81, а средняя F1-мера — 0.82, что указывает 
на сбалансированность модели между точностью и полнотой предсказаний.

Анализ матрицы ошибок (рис. 1) позволяет детально изучить характер распознавания ка-
ждой эмоции. Наименьшее количество ошибок наблюдается для эмоций «спокойствие» (calm) 
и «злость» (angry). Модель надежно отделяет «нейтральное» состояние от остальных. Наи-
большая путаница возникает между эмоциями «грусть» (sad), «радость» (happy) и «страх» 
(fearful), что согласуется с данными других исследований и может быть объяснено акустиче-
ской схожестью их проявления в речи.

Таблица 1
Метрики качества распознавание по классам

Эмоция Точность (Precision) Полнота (Recall) F1-score AUC
angry 0.79 0.92 0.85 0.96
calm 0.91 0.86 0.89 0.97
fearful 0.82 0.86 0.84 0.96
happy 0.77 0.81 0.79 0.96
neutral 0.81 0.72 0.76 0.99
sad 0.81 0.68 0.74 0.93

Данные табл. 1 подтверждают высокое качество модели. Эмоция «спокойствие» распозна-
ется с максимальной точностью (91%), а «злость» — с максимальной полнотой (92 %). Почти 

Рис. 1. Матрица ошибок для MLP
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идеальное разделение, характеризуемое AUC = 0.99, достигнуто для «нейтрального» состоя-
ния. Основной сложностью для модели является распознавание «грусти», которая в 32 % слу-
чаев не обнаруживается (recall = 68 %), несмотря на высокую точность ее предсказания.

Визуализация ROC-кривых (рис. 2) дополнительно подтверждает высокую разделитель-
ную способность модели. Значение Micro-AUC = 0.96 является отличным показателем. Все 
кривые расположены близко к левому верхнему углу графика, что свидетельствует о высоких 
значениях True Positive Rate при низких значениях False Positive Rate для всех шести эмоций.

В ходе исследования методом случайного поиска гиперпараметров была определена опти-
мальная архитектура многослойного перцептрона для решения задачи классификации эмо-
ций по речевому сигналу. Наилучшие результаты продемонстрировала двухслойная конфи-
гурация нейронной сети, содержащая 128 нейронов в первом скрытом слое и 64 нейрона во 
втором. Значимым результатом стало определение гиперболического тангенса в качестве наи-
более эффективной функции активации. 

Выбранная архитектура обеспечила оптимальный баланс между емкостью модели и спо-
собностью к обобщению, что подтвердилось высокими метриками качества классификации. 
Достигнутая точность 81,77 % и F1-мера 81,61 % свидетельствуют о том, что двухслойная кон-
фигурация обладает достаточной глубиной для выявления сложных нелинейных зависимо-
стей в данных, одновременно минимизируя риск переобучения.

Заключение

В ходе исследования была подтверждена высокая эффективность многослойного пер-
цептрона для задачи классификации эмоций по речи. Предложенный подход к формирова-
нию признакового пространства, основанный на статистической агрегации спектральных и 

Рис. 2. ROC-кривая для MLP
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энергетических характеристик сигнала, в сочетании с моделью MLP позволил достичь общей 
точности 81.8 %.

Полученные результаты указывают на перспективность использования MLP в подобных 
задачах. В качестве направлений для будущих исследований можно выделить:

1. Оптимизацию распознавания эмоции «грусть», возможно, за счет введения дополни-
тельных признаков, характеризующих мелодический контур или использование методов ауг-
ментации данных для балансировки классов.

2. Эксперименты с архитектурой нейронной сети, включая подбор количества слоев и ней-
ронов, а также тестирование других типов сетей (например, сверточных для анализа спектро-
грамм).

3. Проверку устойчивости модели на данных от разных дикторов и в условиях реальных 
шумов.

Полученные результаты также демонстрируют эффективность предложенного пайплайна 
предобработки данных, включающего стандартизацию и снижение размерности, для задач 
классификации эмоций по речи. Оптимизированная архитектура MLP показала сопоставимое 
качество с другими современными алгоритмами машинного обучения, подтверждая целесо-
образность использования многослойных перцептронов в задачах обработки аудиосигналов.

Разработанная модель представляет собой надежное решение для автоматического распоз-
навания эмоций и может быть интегрирована в различные прикладные системы.
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УДК 004.8

СИНТЕЗ РЕЧИ ДЛЯ ГОЛОСОВЫХ ЧАТ-БОТОВ: СОВРЕМЕННЫЕ ПОДХОДЫ

Воронежский государственный университет

Д. В. Котов, И. Ф. Астахова

Аннотация. В статье рассматриваются современные методы синтеза речи (TTS — Text-
to-Speech) для голосовых чат-ботов. Обсуждаются классические подходы, нейросетевые 
технологии и их применение в системах автоматизации обработки пользовательских за-
просов. Приводится сравнительный анализ методов с точки зрения естественности, раз-
борчивости и вычислительных ресурсов. Сформулированы выводы о текущем состоя-
нии TTS-технологий и перспективных направлениях их развития.
Ключевые слова: синтез речи, TTS, голосовые чат-боты, нейросетевые модели, WaveNet, 
Tacotron 2, FastSpeech, распознавание речи.

Введение

Голосовые чат-боты становятся важным инструментом автоматизации обслуживания 
пользователей в различных сферах — от колл-центров до банковской и сервисной поддержки. 
Одним из ключевых компонентов таких систем является синтез речи (Text-to-Speech, TTS), по-
зволяющий преобразовать текстовые ответы бота в понятные человеку голосовые сообщения.

Качество синтеза речи напрямую влияет на пользовательский опыт: естественная интона-
ция и разборчивость заметно повышают уровень доверия к системе. Цель данной статьи — 
рассмотреть современные подходы к синтезу речи, их преимущества и ограничения, а также 
практическое применение в голосовых чат-ботах.

1. Основы синтеза речи

Синтез речи представляет собой процесс преобразования текста в аудиосигнал. К ключе-
вым характеристикам синтезируемой речи относятся:

• естественность — степень похожести на человеческий голос;
• разборчивость — лёгкость восприятия и понимания;
• эмоциональность и интонация — способность передавать выразительность.
Ранние TTS-системы базировались на простых алгоритмах, тогда как современные реше-

ния используют сложные нейросетевые модели, обеспечивающие существенно более реали-
стичное звучание.

2. Классические методы синтеза речи

До появления нейросетевых моделей синтез речи реализовывался в основном классиче-
скими методами. Они обеспечивали функциональность, достаточную для базовых задач, но 
существенно ограничивали естественность и гибкость звучания.

2.1. Формантный синтез

Формантный синтез [1] основан на моделировании акустических характеристик голосово-
го тракта человека. Речь формируется с помощью математических моделей резонансов (фор-
мант) и источников звука.
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Преимущества:
• полная управляемость параметрами (высота тона, длительность, тембр);
• независимость от записанных данных;
• низкие требования к памяти и вычислительным ресурсам.
Недостатки:
• характерное «роботизированное» звучание;
• ограниченная передача интонации и эмоций;
• необходимость тонкой настройки параметров для достижения приемлемого качества.
Такие системы использовались в ранних навигаторах, голосовых оповещениях и первых 

автоматизированных колл-центрах.

2.2. Конкатенативный синтез

Конкатенативный синтез [1] основан на объединении заранее записанных фрагментов 
речи (фонем, слогов, слов или коротких фраз) в новые предложения. Этот метод позволяет 
получить более естественный голос, поскольку речь формируется из реальных образцов.

Преимущества:
• более естественное звучание по сравнению с формантным синтезом;
• частичное сохранение интонации реального голоса;
• простота реализации при наличии большой базы голосовых данных.
Недостатки:
• ограниченная гибкость: невозможно легко изменить интонацию или эмоциональный от-

тенок;
• необходимость значительного объема записанных голосовых фрагментов;
• проблемы с согласованием фрагментов: переходы могут звучать неестественно, если не 

использованы алгоритмы сглаживания.
Метод широко применялся в голосовых интерфейсах телефонии 1990–2000-х годов, нави-

гаторах и образовательных устройствах.

3. Современные нейросетевые подходы

В последние годы синтез речи существенно изменился благодаря развитию нейросетевых 
технологий. Современные подходы позволяют не только генерировать речь с высокой есте-
ственностью, но и управлять интонацией, скоростью произношения и даже эмоциональной 
окраской голоса. Ниже рассматриваются наиболее известные модели, которые активно при-
меняются в современных голосовых чат-ботах, их особенности, достоинства и недостатки.

3.1. WaveNet

WaveNet [2] была разработана компанией Google в 2016 году и стала одной из первых ней-
росетевых моделей, способных генерировать высококачественную речь. Модель оперирует на 
уровне отдельных звуковых сэмплов, последовательно предсказывая каждый следующий сэмпл 
на основе предыдущего контекста. Такой принцип обеспечивает точную аппроксимацию рече-
вого сигнала и позволяет получать акустический результат, близкий к естественному звучанию.

Основным ограничением WaveNet является высокая вычислительная сложность: генера-
ция аудиосигнала требует значительных вычислительных ресурсов, а синтез в реальном вре-
мени возможен только при использовании специализированного или высокопроизводитель-
ного оборудования.
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Для задач, связанных с интерактивными голосовыми интерфейсами и чат-ботами, преи-
мущественно применяются более оптимизированные модели, обеспечивающие приемлемый 
баланс между качеством и скоростью генерации.

3.2. Tacotron 2

Tacotron 2 [2] представляет собой двухэтапную архитектуру синтеза речи. На первом эта-
пе модель преобразует входной текст в мел-спектрограмму, на втором — соответствующий 
аудиосигнал формируется при помощи вокодера, в качестве которого могут использоваться 
различные решения, включая WaveNet. Такая схема обеспечивает корректное моделирование 
интонационных характеристик и позволяет гибко управлять параметрами результирующего 
сигнала.

Tacotron 2 применяется в системах озвучивания текста и голосовых интерфейсах благодаря 
сочетанию высокого качества синтеза и умеренных требований к вычислительным ресурсам. 
К ограничениям Tacotron 2 относится сравнительно невысокая скорость генерации, что не-
обходимо учитывать при использовании в интерактивных системах, работающих в режиме 
реального времени.

3.3. FastSpeech

FastSpeech [3] разработан как более производительная и стабильная альтернатива модели 
Tacotron 2. Ключевая особенность архитектуры заключается в параллельной генерации спек-
трограммы, что обеспечивает значительное увеличение скорости синтеза по сравнению с ав-
тоагрегатными моделями. Такой подход позволяет получать аудиосигнал с сохранением основ-
ных интонационных и просодических характеристик при существенно меньших задержках.

Модель демонстрирует высокую пригодность для приложений, работающих в режиме ре-
ального времени, включая интерактивные чат-боты и мобильные решения. В то же время обу-
чение FastSpeech требует крупного и качественно размеченного набора данных, а при обработ-
ке редких или нестандартных слов могут возникать артефакты произношения.

Благодаря оптимальному соотношению скорости генерации и качества синтеза FastSpeech 
широко используется в современных системах TTS, ориентированных на практические сцена-
рии с высокими требованиями к производительности.

3.4. Интеграция распознавания речи и TTS (Whisper + TTS)

Одним из направлений развития голосовых систем является интеграция моделей автома-
тического распознавания речи (ASR), таких как Whisper [4] от OpenAI, с системами синтеза 
речи (TTS). В такой архитектуре входной речевой сигнал пользователя преобразуется в текст, 
который затем обрабатывается модулем обработки естественного языка (NLP) и передаётся в 
систему синтеза для формирования аудиовыхода.

Whisper обеспечивает устойчивое распознавание речи в условиях различного уровня шу-
мов и изменяющихся характеристик аудиосигнала. Совмещение ASR, NLP и TTS позволяет 
создавать архитектуры голосовых интерфейсов, функционирующих в режиме диалоговой си-
стемы и поддерживающих обмен репликами в реальном времени.

Основной сложностью интеграции является необходимость одновременной работы не-
скольких моделей, что увеличивает вычислительные требования и требует оптимизации ар-
хитектуры или применения специализированного аппаратного обеспечения.
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3.5. Сравнительный анализ моделей

Для более наглядного понимания различий между рассмотренными моделями целесоо-
бразно привести их сравнительный анализ по ключевым параметрам: естественность речи, 
скорость генерации, вычислительные ресурсы и области применения. Основные характери-
стики WaveNet, Tacotron 2, FastSpeech и интеграции Whisper + TTS приведены в табл. 1.

Таблица 1
Сравнение современных моделей синтеза речи

Модель Естественность Скорость 
генерации

Вычислительные 
ресурсы

Применение

WaveNet Очень высокая Низкая Высокие Высококачественные 
ассистенты, аудиокниги

Tacotron 2 Высокая Средняя Средние Озвучка текста, голосовые 
ассистенты

FastSpeech Высокая Высокая Средние Реальное время, 
интерактивные чат-боты

Whisper+TTS Средняя/Высокая Высокая Средние/Высокие Диалоговые системы, 
колл-центры

Из сравнения видно, что выбор модели TTS зависит от конкретных задач. WaveNet обе-
спечивает наивысшее качество речи, но медленный и ресурсоёмкий. Tacotron 2 сочетает есте-
ственность с умеренной скоростью, подходя для голосовых ассистентов. FastSpeech оптими-
зирован для работы в реальном времени и интерактивных чат-ботов. Интеграция Whisper с 
TTS обеспечивает точное понимание речи и динамическое построение диалога, что делает её 
перспективной для современных голосовых систем.

4. Ограничения и перспективы применения TTS-технологий

Современные голосовые чат-боты широко используются для автоматизации обслужива-
ния в колл-центрах, банках, сервисных службах и устройствах «умного дома», помогая обра-
батывать стандартные запросы, снижать нагрузку на операторов и сокращать время ожидания 
клиентов. При этом существуют определённые ограничения при использовании TTS-систем. 
Передача эмоций и интонации пока остаётся ограниченной, особенно при синтезе сложных 
или нестандартных фраз. Кроме того, редкие слова, имена и специфические термины могут 
произноситься некорректно, а крупные нейросетевые модели требуют значительных вычис-
лительных ресурсов, что затрудняет их внедрение на маломощных устройствах. Эффективное 
обучение таких моделей, как FastSpeech или Tacotron 2, также требует больших и качественно 
размеченных датасетов.

Несмотря на эти ограничения, перспективы применения TTS-технологий остаются очень 
широкими. Интеграция с системами распознавания речи и NLP позволяет создавать инте-
рактивные диалоговые системы, развитие эмоциональной и адаптивной речи повышает есте-
ственность общения, а мульти-языковые модели и оптимизация под мобильные устройства 
расширяют возможности глобального применения голосовых ассистентов. Таким образом, 
современные технологии синтеза речи открывают новые горизонты для эффективного, удоб-
ного и максимально приближенного к человеческому взаимодействия с пользователями.
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Заключение

Синтез речи является ключевым компонентом голосовых чат-ботов. Современные нейро-
сетевые модели обеспечивают естественную и разборчивую речь, значительно расширяя воз-
можности голосовых систем. Перспективные направления развития, включая эмоциональную 
и адаптивную речь, мульти-языковые модели и оптимизацию под мобильные устройства, соз-
дают дополнительные возможности для интерактивных голосовых ассистентов. Использова-
ние таких технологий позволяет создавать голосовых ассистентов, чья речь максимально при-
ближена к естественному человеческому общению, что повышает качество взаимодействия и 
эффективность автоматизированных систем.
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Аннотация. Диффузионные модели продемонстрировали беспрецедентные возможно-
сти в синтезе фотореалистичных изображений, вызвав трансформации во многих кре-
ативных и научных областях. Однако фундаментальной проблемой остается переход от 
стохастической генерации к контролируемому синтезу. Неконтролируемый или слабо 
контролируемый синтез, часто основанный исключительно на текстовых описаниях, не-
способен удовлетворить требования прикладных задач, требующих точного соблюдения 
композиции, геометрии, ракурса и консистентности объектов. В данной статье пред-
ставлен систематический обзор и анализ современных методов контроля генерации изо-
бражений в диффузионных моделях. Особое внимание уделяется их применимости для 
специфической задачи генерации двумерных изображений объектов в ортографической 
проекции.
Ключевые слова: диффузионные модели, генерация изображений, контролируемый син-
тез, ControlNet, ортографическая проекция, T2I-адаптеры, мультимодальный контроль, 
text-to-image, условная генерация.

Введение

Диффузионные модели продемонстрировали высокую эффективность в задачах генера-
ции фотореалистичных изображений и в настоящее время широко используются в области 
генеративной графики [1]. Их применение выходит за рамки художественных экспериментов 
и включает задачи дизайна, технической визуализации, медицины, робототехники и аналити-
ки данных.

Вместе с тем ключевой исследовательской проблемой остается переход от малоуправляе-
мой генерации изображений к контролируемой. Генерация, опирающаяся преимущественно 
на текстовые описания, во многих случаях не обеспечивает соблюдения строгих прикладных 
требований: точной композиции, согласованной геометрии, заданного ракурса и консистент-
ности представления объекта в серии изображений [2].

Цель данной работы состоит в анализе применимости современных методов контроля ге-
нерации изображений в диффузионных моделях, в том числе по отношению к задаче генера-
ции двумерных изображений в ортографической проекции.

1. Базовые принципы диффузионных моделей и условной генерации

Диффузионные модели рассматривают генерацию изображения как обратный процесс по 
отношению к его «зашумлению». На прямом этапе к исходному изображению шаг за шагом 
добавляют гауссовский шум, пока оно полностью не разрушается; на обратном этапе нейросе-
тевая модель постепенно убирает шум и восстанавливает осмысленное изображение [3]. 

В современных реализациях этот процесс выполняется не в исходном пиксельном пред-
ставлении, а в более компактном внутреннем представлении изображения, что снижает вы-
числительные затраты при сопоставимом качестве результата [4]. В условной генерации до-
полнительно вводится сигнал-условие. В задачах типа «текст–изображение» текстовый запрос 
кодируется языковым энкодером, а полученный вектор признаков используется в архитектуре 
U-Net через механизм cross-attention. 
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Механизм classifier-free guidance (CFG) позволяет регулировать степень влияния текста за 
счет комбинирования условного и безусловного предсказаний шума. Вместе с тем один только 
текстовый сигнал не обеспечивает точного контроля геометрии и ракурса. Текстовое описа-
ние неоднозначно, а многие пространственные отношения трудно задать словами. Поэтому 
текст обычно дополняют другими типами управляющих сигналов.

2. Типы управляющих сигналов в диффузионных моделях

Методы контроля генерации в диффузионных моделях удобно классифицировать по типу 
вводимого управляющего сигнала. Рассмотрим четыре основных класса: текстовый контроль, 
структурный контроль на основе карт, визуальный контроль через примеры изображений и вы-
сокоуровневый (символический) контроль (рис 1). Отдельно выделяется группа геометрически- 
и ракурс-осознанных методов, основанных на многовидовых и трехмерных представлениях. 

2.1. Текстовый контроль

Текстовый контроль опирается на использование текстовых промтов, которые остаются 
самым распространенным механизмом управления. Пользователь формулирует описание со-
держания и стиля изображения, а также, при необходимости, добавляет негативные промты 
для исключения нежелательных элементов. Преимуществами такого подхода являются есте-
ственность взаимодействия и низкий порог входа, а также высокая выразительность текста 
для задания семантики сцены и стилистики изображения. Текстовые описания также хорошо 
сочетаются с современными языковыми моделями. 

В то же время интерпретация промтов неизбежно остается неоднозначной: близкие по 
смыслу формулировки могут приводить к различным результатам, а небольшие изменения 
формулировки или случайного seed заметно влияют на структуру изображения. Особенно 
чувствительными оказываются задачи, требующие строгого контроля геометрии и ракурса 
(в том числе ортографических видов), где текстовое описание не обеспечивает достаточной 
предсказуемости и воспроизводимости [5]. В этом контексте текст целесообразно рассматри-
вать в первую очередь как средство задания содержания и стиля, а не как основной инстру-
мент геометрического управления.

2.2. Структурный контроль

Структурный контроль основан на введении дополнительных карт, описывающих геоме-
трию и композицию сцены. В качестве таких карт могут использоваться скелеты поз, контуры 
и карты границ, карты глубины и нормалей, а также семантические маски и результаты сег-
ментации. Модели семейств ControlNet и T2I-Adapter интерпретируют эти структуры как до-
полнительные каналы, связанные с основным U-Net через специализированные адаптеры [6]. 

Рис. 1. Основные типы управляющих сигналов в диффузионных моделях
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Подобная схема позволяет явно управлять композицией и формой: при наличии кор-
ректных структурных карт модель надежно следует заданному силуэту и ракурсу объекта, при 
этом текст играет вспомогательную роль, уточняя содержание и стиль. Вместе с тем структур-
ный контроль требует либо специальной разметки, либо использования внешних алгоритмов 
для извлечения карт, что усложняет процесс работы. Добавление соответствующих модулей 
увеличивает архитектурную и вычислительную сложность системы, а ошибки в картах могут 
приводить к «жесткому» навязыванию некорректных структур. Для задач ортографической 
проекции именно такой тип управления оказывается принципиально важным: глубинные и 
карты нормали, а также контуры позволяют явно задавать проекцию объекта на выбранную 
плоскость и фиксировать ракурс.

2.3. Структурный контроль

Визуальный контроль реализуется за счет использования референсных изображений, за-
дающих желаемый стиль, текстуру или идентичность объекта. Специализированные адапте-
ры позволяют разделять внимание между текстовыми и визуальными признаками, что обе-
спечивает совместный учет семантики текстового описания и внешнего вида примера. 

Этот класс методов применяется, прежде всего, для сохранения идентичности объекта в 
серии изображений, переноса художественного стиля и обеспечения частичной консистент-
ности между различными ракурсами. В условиях ортографической генерации референсное 
изображение может выступать в роли эталонного вида, по отношению к которому требуются 
согласованные ортографические проекции: модель должна воспроизводить одинаковые визу-
альные характеристики при изменении направления проекции.

2.4. Высокоуровневый контроль

Высокоуровневый, или символический, контроль задает сцену через формальные описа-
ния. В качестве таких описаний могут выступать layout-репрезентации с явным указанием 
положения и размера объектов, сцены в виде графов объектов и их отношений, а также сце-
нарные или скриптовые спецификации. Методы класса layout-to-image и grounded diffusion 
позволяют связать текстовые описания с конкретными областями изображения, что повыша-
ет точность расположения объектов и облегчает контроль композиции [7]. 

Эти подходы особенно перспективны для технической и научной визуализации, где ис-
ходные данные часто уже представлены в формализованном виде — в формате CAD-моделей, 
траекторий робототехнических систем, медицинских информационных систем и т.п. Интегра-
ция таких структурированных описаний с диффузионными моделями открывает возможно-
сти для более строгого и проверяемого контроля генерации.

3. Геометрический-осознанный контроль

Отдельную группу составляют геометрически-осознанные и ракурс-осознанные методы, 
использующие многовидовые или трехмерные представления для обеспечения согласован-
ности изображений одного объекта под различными ракурсами. Модели класса multi-view 
diffusion генерируют несколько видов сцены одновременно, синхронизируя внутренние пред-
ставления для различных направлений обзора и тем самым добиваясь согласованности геоме-
трии и цветовых характеристик между ракурсами [8]. 

В качестве альтернативного решения рассматриваются методы, в которых предварительно 
формируется скрытое трёхмерное представление сцены (например, в виде нейросетевого поля 
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излучения NeRF), после чего из этого представления вычисляются двумерные проекции для 
заданных параметров виртуальной камеры.

Для задач ортографической проекции такие методы имеют принципиальное значение. 
Они позволяют рассматривать набор проекций не как совокупность независимых изображе-
ний, а как реализацию единого совместного распределения видов объекта. Это облегчает со-
блюдение пропорций и форм при переходе от одного ракурса к другому и дает возможность 
задавать согласованный набор ортографических представлений, ориентированных на разные 
плоскости проекции. 

В то же время широкое применение геометрически-осознанных подходов ограничивает-
ся рядом факторов. Во-первых, многовидовая генерация существенно увеличивает вычисли-
тельную стоимость по сравнению с традиционными одновидовыми моделями. Во-вторых, об-
учение таких систем требует многовидовых датасетов или трехмерных моделей с известными 
параметрами обзора, которые доступны далеко не для всех предметных областей. В-третьих, 
интеграция трехмерно-ориентированных блоков с текстовыми, структурными и визуальны-
ми условиями в рамках единой архитектуры представляет собой нетривиальную исследова-
тельскую задачу и пока не имеет устоявшихся решений.

4. Генерация ортографических представлений

Под генерацией ортографических представлений в текущем контексте понимается получе-
ние набора изображений объекта в стандартных ракурсах (вид спереди, сбоку, сверху и т. д.) 
без перспективных искажений. Подобные наборы широко используются в инженерной графи-
ке, робототехнике, технических каталогах, учебных материалах и других областях, где требу-
ется строгое соблюдение масштабов и форм (рис. 2).

К ортографическим представлениям предъявляется ряд специфических требований. 
Во-первых, необходима геометрическая согласованность между ракурсами: пропорции и 
контуры объекта должны согласованно воспроизводиться при смене направления проекции. 
Во-вторых, важна стабильность визуальных атрибутов, включая цвет, текстуру и маркиров-
ку, особенно если изображения рассматриваются как элементы единого описания объекта. 
В-третьих, требуется строгое соблюдение параметров проекции: отсутствие перспективных 

Рис. 2. Схема конвейера контролируемой генерации ортографических представлений 
на основе диффузионной модели
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искажений и корректное отображение масштабов в соответствии с выбранной системой ко-
ординат [9].

Рассмотренные выше типы управляющих сигналов вносят разные элементы в решение 
этой задачи. Текстовые описания задают семантическую сущность объекта и общий стиль 
изображения, но практически не обеспечивают точного контроля геометрии. Структурные 
карты, такие как карты глубины, нормалей и контуры, позволяют явно задать форму и ракурс, 
включая ортографическую проекцию на выбранную плоскость. Визуальные примеры служат 
для сохранения идентичности внешнего вида при переходе от одного вида к другому, что важ-
но при построении наборов согласованных проекций. Геометрически-осознанные многовидо-
вые модели, в свою очередь, обеспечивают согласованность набора проекций как целостного 
представления объекта, а не набора независимых изображений.

Несмотря на наличие таких «строительных блоков», специализированные решения, наце-
ленные именно на генерацию ортографических представлений, пока остаются ограниченны-
ми. На сегодняшний день отсутствуют общепринятые датасеты с ортографическими проек-
циями и детальной аннотацией ракурсов, равно как и метрики, количественно оценивающие 
межракурсную согласованность и точность соблюдения проекционных свойств. Это суще-
ственно затрудняет систематическое сравнение методов и обучение моделей, ориентирован-
ных на подобные задачи, и подчеркивает необходимость дальнейших исследований в данном 
направлении.

5. Ограничения существующих подходов и перспективы развития

Обобщение рассмотренных методов позволяет выделить несколько ключевых ограниче-
ний, характерных для текущего состояния области. Одной из центральных проблем является 
конфликт управляющих сигналов: одновременное использование текста, структурных карт, 
визуальных примеров и многовидовых условий нередко приводит к противоречивым тре-
бованиям к результирующему изображению. На практике балансировка влияния различных 
сигналов осуществляется эмпирически, посредством подбора коэффициентов и параметров 
обучения, и пока не существует строго обоснованных методик, гарантирующих согласованное 
взаимодействие всех источников информации.

Дополнительную сложность создает рост архитектурной и вычислительной нагрузки. На-
ращивание числа адаптеров, модулей структурного контроля и 3D-aware блоков приводит к 
увеличению размеров моделей и затрат на их использование. Это ограничивает применение 
таких систем в условиях ограниченных ресурсов и в сценариях, где требуется близкая к реаль-
ному времени генерация изображений.

Существенным ограничением является также отсутствие специализированных бенчмар-
ков и метрик для задач ортографической и многовидовой двумерной визуализации. Имею-
щиеся показатели, такие как FID или CLIP-score, ориентированы преимущественно на оценку 
перцептивного качества и семантического соответствия тексту и не отражают геометриче-
скую согласованность и точность проекций. Отсутствие стандартных наборов данных с орто-
графическими представлениями и четко определенными геометрическими характеристиками 
затрудняет объективное сравнение методов и замедляет развитие направления.

Наконец, важной практической проблемой остаются устойчивость и воспроизводимость 
результатов. Случайный характер генерации в диффузионных моделях осложняет получение 
детерминированных изображений при повторных запусках даже при небольших изменениях 
условий. Для ответственных приложений, таких как медицинская визуализация или инже-
нерные отчеты, это особенно критично и требует разработки дополнительных механизмов 
контроля и механизмов оценки надежности результата.
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Перспективные направления исследований включают создание мультимодальных кон-
троллеров, способных явно управлять приоритетами разных сигналов и формализованно 
разрешать их конфликты; разработку специализированных бенчмарков и метрик для оценки 
ортографической и многовидовой согласованности; а также изучение интерактивных систем 
типа «человек + ИИ», в которых пользователь поэтапно уточняет структурные и геометриче-
ские ограничения, а модель, в свою очередь, обеспечивает сохранение уже достигнутой согла-
сованности при внесении изменений.

Заключение

Таким образом, в данной работе был представлен анализ методов контроля генерации 
изображений в диффузионных моделях с классификацией по типам управляющих сигналов 
и акцентом на их применимость к задачам генерации двумерных изображений объектов в ор-
тографической проекции. Показано, что текстовые сигналы эффективно задают семантику и 
стиль, но слабо контролируют геометрию; структурные карты и визуальные примеры позво-
ляют управлять формой и идентичностью объекта, тогда как геометрически-осознанные мно-
говидовые модели обеспечивают согласованность наборов проекций.

Выделенные ограничения — конфликт условий, рост архитектурной сложности, отсутствие 
специализированных бенчмарков и метрик, а также проблемы устойчивости и воспроизводи-
мости — определяют ключевые направления дальнейших исследований. Дальнейшее разви-
тие области видится в создании мультимодальных контроллеров, интегрирующих различные 
типы управляющих сигналов, в формализации критериев геометрической согласованности и 
в разработке ориентированных на ортографические представления наборов данных, которые 
позволят систематически оценивать и сравнивать новые методы контролируемой генерации.
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УДК 004.8

ПРИМЕНЕНИЕ НЕЙРО-НЕЧЕТКИХ СИСТЕМ В ЗАДАЧАХ ЗАПОЛНЕНИЯ ПРОПУСКОВ

Воронежский государственный университет

А. В. Лепендин, Т. В. Азарнова

Аннотация. Цель исследования — оценить эффективность использования в задачах за-
полнения пропусков нейро-нечетких гибридных систем таких как: адаптивная нейро-не-
четкой системы вывода (ANFIS) с моделью нечеткого вывода Такаги-Сугено и нечеткая 
кластерная импутация (Fuzzy Cluster Imputer). Оба подхода используют гауссовы функ-
ции принадлежности и инициализацию через метод ближайших соседей, параметры 
ANFIS настраиваются алгоритмом градиентного спуска, в Fuzzy Cluster Imputer использу-
ется фиксированная кластерная структура. Экспериментальная апробация данных двух 
подходов показывает, что они позволяют существенно повысить качество заполнения 
пропусков по сравнению со стандартными наиболее часто используемыми методами. Ре-
зультаты исследования подтверждают перспективность интеграции нейро-нечётких си-
стем в модули анализа данных.
Ключевые слова: неполные данные, нечеткие системы, Такаги — Сугено, ANFIS, нечет-
кая кластерная импутация, метод ближайших соседей, переобучение.

Введение

Одной из серьезных проблем при решении задачи прогнозирования остаются неполные 
данные. Пропущенные значения возникают по различным причинам от технического харак-
тера (при неполадках и сбоях оборудования), до связанных с человеческим фактором (отказ 
человек от прохождения процедуры или ответа на вопрос). Наличие пропусков в данных сни-
жает качество их предварительной обработки, а также эффективность использования данных 
для дальнейшего моделирования. [7]

Настоящая статья посвящена проблеме заполнения пропущенных значений с использо-
ванием гибридных нечетких методов. В рамках исследования решается задача построения 
адаптивной нейро-нечеткой системы вывода (ANFIS) с моделью Такаги — Сугено первого по-
рядка и нечеткого кластерного импутера. Проводится оценка качества заполнения пропусков 
и сравнение точности предлагаемых решений со стандартными методами заполнения пропу-
сков. Поднимается проблема переобучения при малом объеме данных. [5]

Объектом исследования являются методы заполнения пропущенных значений в таблич-
ных, в первую очередь, медицинских данных. Предметом исследования являются гибридные 
нечеткие системы, сочетающие кластерный анализ и нечеткий вывод. Также стоит отметить, 
что нечеткий вывод Такаги — Сугено был выбран вместо алгоритма Мамдани по причине 
преимущества первого в гладкости отображения, возможности применения градиентной оп-
тимизации, а также из-за отсутствия необходимости этапа дефаззификации, что делает его 
предпочтительным в задаче регрессии при заполнении пропусков. [6] 

В процессе исследования анализируются условия, при которых рассматриваемые подходы 
демонстрируют свои преимущества и недостатки, внимание сконцентрировано  на балансе 
между выразительностью, устойчивостью и интерпретируемостью подходов. 

1. Описание эксперимента

1.1. Данные для эксперимента

При выборе подходящего для исследования набора данных наличие пропусков в данных 
не являлось обязательным условием, поскольку обучение и тестирование проводилось на той 
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его части, которую составляли полные записи по всем переменным. Одной из причин для вы-
бора медицинских наборов данных была особенность таких данных, связанная с асимметрич-
ностью связей между признаками. Например, для больных диабетом людей характерен как 
высокий инсулин (инсулинорезистентность при сахарном диабете второго типа), так и крайне 
низкий инсулин (отсутствие выработки инсулина при сахарном диабете 1-го типа). Исходя 
из данных особенностей медицинских данных было принято решение строить правила для 
заполнения пропущенных значений с учетом известных исходов (людей с диабетом или без). 
Полные данные использовались, как наиболее подходящие для контролируемых эксперимен-
тов и сравнительного анализа методов заполнения пропусков. [4]

1.2. Методы заполнения пропусков и оценка качества заполнения пропусков

Для восстановления пропущенных значений использовались три стандартных метода:
• заполнение средним или медианным значением;
• заполнение методом k-ближайших соседей (KNNImputer);
• итеративное заполнение регрессионной моделью (MICE).
И два гибридных метода:
• адаптивная нейро-нечеткая система вывода (ANFIS) с моделью нечеткого вывода Така-

ги — Сугено 
• нечеткая кластерная импутация (Fuzzy Cluster Imputer)
Для каждого из них рассчитывались метрики MAE и RMSE между восстановленными и 

исходными значениями. 
Метрика MAE (среднее абсолютное отклонение рассчитывается) по формуле (1):
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Метрика RMSE (среднеквадратическое отклонение рассчитывается) по формуле (2):
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Выбор гауссовой нечеткой функций принадлежности обусловлен математическими, вы-
числительными и интерпретационными преимуществами в контексте гибридных нейро-не-
четких систем. [9]

Гауссова функция — бесконечно дифференцируема по всем параметрам, что важно для 
обучения ANFIS, в то время как для других функций (треугольных, трапециевидных) в точках 
излома градиенты не определены или обучение нестабильно из-за скачкообразности, гауссова 
функция представима по формуле (3):
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1.3. Обучение нейро-нечеткой системы, генерация правил

Из 768 строк в исходных данных только 392 оказались полностью заполненными, в обуча-
ющую выборку попало 313 записей, в тестовую выборку попало 79 записей. Центры и ширины 
гауссовых функций принадлежности инициализировались методом ближайших соседей, а за-
тем настраивались в процессе обучения ANFIS. Для каждой зависимой переменной строилось 
по 3 правила для исхода с диабетом и без диабета, итого — по 6 правил.
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Пример построения правил в нейро-нечеткой системе ANFIS для пациентов без диабета 
(Outcome = 0) для заполнения признака «Кровяное давление» — «BloodPressure» показан ниже 
(рис. 1).

Для большей наглядности были построены несколько функций принадлежности различ-
ных признаков, используемых в правилах для пропусков в других признаках (рис. 2, 3).

Рис. 1. Построение правил с помощью нечеткого вывода Такаги — Сугено первого порядка

Рис. 2. Функция принадлежности для признака «Количество беременностей» 
в модели предсказания «Функции родословной диабета»
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1.4. Нечеткое кластерное заполнение пропущенных данных 

Для полностью заполненных данных была проведена кластеризация с разным количе-
ством кластеров, целью задачи был расчет средних значений признаков в зависимости от при-
надлежности к кластеру для дальнейшего заполнения пропущенных данных с учетом степени 
принадлежности записи с пропуском одному из выявленных кластеров. 

На рис. 4 приведена демонстрация кластеров в проекции на признаки «Глюкоза» и «Индекс 
массы тела».

Рис. 3. Функция принадлежности для признака «Кровяное давление» 
в модели предсказания «Инсулина»

Рис. 4. Построение 7 кластеров в проекции на признаки «Глюкоза» и «Индекс массы тела»
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2. Результаты

Для оценки качества заполнения пропущенных значений, в полных данных поочередно 
для каждого предиктора (независимой переменной) создаются пропуски, которые заполняют-
ся на основании полных данных из других переменных.

Предлагаемая нейро-нечеткая система ANFIS показывает отличные результаты, однако 
уже при построении 3 правил для каждого признака и исхода наблюдается повышение ошибки 
на тестовой выборке в сравнении с обучающей выборкой, что говорит о переобучении (рис. 5).

При увеличении количества генерируемых правил, например, с 3 до 7, ошибка на обучаю-
щей выборке продолжает снижаться, в то время как на тестовой выборке все больше наблю-
дается явление переобучения. Такой результат связан с высокой параметризацией системы 
ANFIS и с малым объемом полных данных для обучения. 

На рис. 6 приведена визуализация средних абсолютных ошибок для разных методов, ANFIS 
показывает лучшие результаты, заполнение средним по кластерам с использованием нечеткой 
принадлежности дает схожие результаты, а по признаку «Индекс массы тела» — «BMI», пре-
восходит по качеству нейро-нечеткую систему.

В условиях малых данных простые, устойчивые методы могут превосходить сложные об-
учаемые модели, Fuzzy Cluster Imputer показывает более высокую точность при увеличении 
числа кластеров с 3 до 7, результаты расчета средней абсолютной ошибки для разного числа 
кластеров приведены в табл. 1.

Рис. 5. Расчет средней абсолютной ошибки и среднеквадратического отклонения 
на обучающей и тестовой выборках
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Заключение

В статье была рассмотрена проблема применения нечетких информационных технологий 
для заполнения пропусков в неполных данных. Проведен сравнительный анализ гибридных 
подходов и нескольких стандартных методов заполнения пропущенных значений.

Исходя из результатов анализа, можно сделать вывод о том, что оба предложенных гибрид-
ных подхода превосходят стандартные методы по точности заполнения пропусков.

Нечеткий кластерный импутер особенно хорошо проявляет себя для признаков с явно вы-
раженной кластерной структурой, увеличение числа кластеров позволяет существенно улуч-
шить метрики качества импутации. 

Адаптивная нейро-нечеткая система вывода (ANFIS) с моделью нечеткого вывода Така-
ги-Сугено первого порядка является параметрической моделью с большим числом обучаемых 
параметров из-за чего при малом числе данных   модель начинает запоминать информацию 
вместо обобщения и наблюдается явление переобучения. Важными преимуществами ANFIS 

Рис. 6. Визуализация средней абсолютной ошибки, 
полученной при заполнении пропусков различными методами

Таблица 1
Средняя абсолютная ошибка по признакам

Количество 
кластеров

Уровень 
глюкозы

Кровяное 
давление

Толщина 
кожи

Уровень 
инсулина

Индекс массы 
тела

2 23.23 10.26 6.53 83.18 5.44
3 23.39 9.56 6.58 82.84 4.61
4 22.81 9.53 6.8 85.3 4.91
5 20.68 9.08 5.94 76.97 4.46
6 18.8 9.45 6.29 71.02 4.19
7 19.76 9.11 6.1 67.29 4.08



326

являются интерпретируемость правил и высокий потенциал обучения при большом объеме 
данных. ANFIS можно комбинировать с другими моделями с целью получения более эффек-
тивной ансамблевой модели. [5]

Выбор метода заполнения пропусков во многом зависит от специфики конкретной задачи 
или исследования. Полные данные могут дать более значимые результаты, если они не иска-
жены систематическими пропусками. Однако если пропуски носят неслучайный характер, не-
обходимо использовать специальные методы обработки пропусков, способные выявлять за-
кономерности в данных, чтобы избежать искажений и потери статистической значимости. [4]
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ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИЙ АВТОМАТИЧЕСКОГО 
РАСПОЗНАВАНИЯ ЭМОЦИЙ ДЛЯ ДИАГНОСТИКИ И ПОДДЕРЖКИ ДЕТЕЙ 

С РАССТРОЙСТВАМИ АУТИСТИЧЕСКОГО СПЕКТРА

Воронежский государственный университет

К. А. Лихачева, М. Ю. Лихачев

Аннотация. Расстройства аутистического спектра (РАС) — многоаспектные нейрораз‑
витийные расстройства, затрудняющие социальное взаимодействие и коммуникацию. 
В последние годы внедрение автоматических методов анализа речи и эмоций становится 
одним из перспективных направлений в разработке средств диагностики и поддержки 
данной категории детей. В данной статье рассматриваются современные методы автома‑
тического распознавания эмоций (SER), их применение в контексте диагностики и тера‑
пии детей с РАС, а также перспективные направления развития технологий. Обоснована 
актуальность автоматизации оценки эмоционального состояния, что способствует более 
объективной и своевременной диагностике, а также расширяет возможности индивиду‑
ализированной терапии.
Ключевые слова: автоматическое распознавание эмоций, речь, расстройства аутистиче‑
ского спектра, машинное обучение, диагностика, реабилитация.

Введение

Расстройства аутистического спектра (РАС) представляют из себя сложные нейроразвитий-
ные состояния, проявляющиеся нарушениями коммуникации, социального взаимодействия и 
наличием стереотипных интересов и поведения. Традиционные методы диагностики данных 
расстройств основаны на наблюдении, беседах и использовании анкетных опросников, что за-
частую требует много времени и субъективных оценок со стороны специалистов [1].

В связи с этим, растет интерес к автоматизированным системам, способным анализиро-
вать речь и эмоциональные реакции детей с РАС. Точное и быстрое определение эмоциональ-
ных состояний позволит повысить качество диагностики, мониторинга и терапии, а также 
поможет адаптировать методы коррекции в реальном времени [4]. Значительную роль в этом 
играет автоматическое распознавание эмоций, которое позволяет выявлять эмоциональные 
отклики по акустическим признакам речи.

1. Методы автоматического распознавания эмоций

Для распознавания эмоций у людей с аутизмом используются различные методы: визу-
альные пособия (карточки с эмоциями), социальные истории, когнитивно-поведенческая те-
рапия, а также специализированные программы и технологии, например, приложения с ис-
пользованием дополненной реальности. Важно также использовать стратегии для обучения 
и саморегуляции, такие как дыхательные упражнения и практика осознанности. Одним из 
данных направлений является распознавание эмоций по речевым признакам. 

Распознавание речевых эмоций (SER) — это область исследования, которая занимается 
выводом человеческих эмоций из речевых сигналов. Такие системы сосредоточены на иденти-
фикации голосового ввода как относящегося к различным категориям эмоций. Контролируе-
мые методы машинного обучения, известные своей эффективностью, часто используются во 
многих исследованиях распознавания эмоций речи [3].
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Для обучения моделей в SER используется датасеты с записанными речевыми образцами. 
В идеале, такие датасеты должны содержать акустические записи детей с РАС, аннотирован-
ные по эмоциональному признаку (радость, страх, печаль, гнев и т.п.).

Предварительная обработка аудио включает шумоподавление, нормализацию громкости, 
сегментацию речи на отдельные фрагменты. Данные процессы имеют большое значение для 
стабильной работы алгоритмов [5].

Наиболее широко применяемые признаки аудиоданных, используемые в подобных зада-
чах — мел-частотные спектральные характеристики (MFCC), спектрограммы, ритмические 
параметры, и тембровые признаки. Они позволяют моделям «понимать» акустическую струк-
туру речи.

Для обучения подобных моделей используются классические алгоритмы машинного обу-
чения, такие как метод опорных векторов (SVM), случайные леса, и нейронные сети, такие как 
сверточные (CNN), рекурентные (RNN), а также трансформеры).

Задачи машинного обучения в SER, как правило, относятся к задачам классификации. Их 
эффективность оценивается такими метриками, как точность, полнота, F1-оценка. 

Использование сверточных и рекуррентных нейронных сетей в данных задачах позволяет 
добиться высокой точности распознавания эмоций на стандартных датасетах. Например, ис-
следования подтверждают, что такие системы могут достигать точности выше 80% в класси-
фикации базовых эмоций у взрослых. Для детей с РАС задачи усложнены из-за вариативности 
выражения эмоций, поэтому требуется создание специальных датасетов и алгоритмов, учиты-
вающих особенности данного контингента [5].

2. Перспективы применения методов SER

В области диагностики автоматическое распознавание эмоций помогает специалистам по-
лучать дополнительные объективные показатели по эмоциональной реакции ребенка во вре-
мя обследования. Это особенно важно при диагностике детей с РАС, у которых выраженность 
эмоциональных проявлений может быть затруднена или искажена [3].

В реабилитации и терапии благодаря мониторингу в реальном времени системы могут 
отслеживать эмоциональное состояние ребенка в ходе занятий, предоставляя ценную обрат-
ную связь родителям и педагогам. Полученные данные о реакциях помогают корректировать 
терапевтическую стратегию в реальном времени. Доступные к самостоятельной установке и 
использованию приложения с функциями SER позволяют родителям в домашних условиях 
лучше понимать эмоциональное состояние ребенка и реагировать на него.

3. Сложности и проблемы использования методов SER

Для обеспечения качества используемых данных необходимо создание больших и репре-
зентативных датасетов с записями детей с РАС. В процессе обработки данных могут возник-
нуть некоторые сложности с акустическими условиями, такие как шум, фоновая музыка, а 
также разные микрофоны оказывают влияние и могут ухудшить качество распознавания.

Также имеют место быть затруднения в этических аспектах, такие как обеспечение приват-
ности и защита персональных данных, а также соблюдение этических стандартов при сборе 
данных [2].

Необходимо также учитывать и особенности выражения эмоций у детей с РАС. У разных 
пациентов возможны отличия в проявлении одних и тех же эмоций, что требует разработки 
специальных алгоритмов.

Несмотря на описанную выше проблематику, использование технологий автоматическо-
го распознавания эмоций в контексте диагностики и поддержки детей с аутизмом значимая 
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перспективная область, сочетающая достижения искусственного интеллекта и практические 
потребности медицины. Внедрение таких систем обещает повысить точность оценки эмоцио-
нального состояния, сократить субъективность и повысить эффективность коррекционно-ре-
абилитационных мероприятий.

Тем не менее, для широкого внедрения необходимо продолжить разработку и адаптацию 
алгоритмов к особенностям данной категории детей, расширять базы данных и учитывать 
этические стандарты. В перспективе, интеграция SER с другими технологиями, например, 
компьютерным зрением, позволит создать мульти-модальные системы, значительно расширя-
ющие возможности поддержки и диагностики.

Заключение

Современные достижения в области автоматического распознавания эмоций представля-
ют собой инструмент, открывающий новые горизонты в диагностике, лечении и поддержке 
детей с аутизмом. Использование технологий SER позволяет объективно и систематически 
оценивать эмоциональные реакции детей, что особенно важно в условиях, когда традицион-
ные методы часто основываются на субъективном наблюдении и могут быть ограничены в 
своей точности и последовательности.

Одним из ключевых преимуществ внедрения систем автоматического распознавания эмоций 
является возможность повысить точность диагностики эмоциональных особенностей детей с ау-
тизмом. Автоматизированные алгоритмы способны выявлять нюансы эмоциональных проявле-
ний, которые могут ускользать при ручной оценке, а также обеспечить постоянный мониторинг 
динамики эмоционального состояния в реальном времени. Это способствует более быстрому 
реагированию и подбору индивидуальных методов коррекции и реабилитации, что в конечном 
итоге способствует повышению эффективности терапии и улучшению качества жизни детей [3].

Перспективы развития технологий автоматического распознавания эмоций включают ин-
теграцию с другими мультимодальными системами, например, компьютерным зрением, аку-
стической обработкой речи и биометрическими датчиками. Такой мульти-модальный подход 
способен существенно расширить возможности диагностики и поддержки, позволяя ком-
плексно оценивать состояние ребенка и предлагать более точные и персонализированные ме-
тоды вмешательства.

В целом, внедрение систем SER в клиническую практику открывает новые возможности 
для более объективной, быстрой и эффективной оценки эмоциональных реакций детей с ау-
тизмом. При правильной адаптационной работе и соблюдении этических стандартов они спо-
собны стать важной частью современного арсенала терапевтических и диагностических мето-
дов. В перспективе такие технологии будут играть важную роль в создании условий для более 
эффективной реабилитации, содействуя формированию условий для гармоничного развития 
и повышения качества жизни детей с аутизмом и их семей.
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ПРОТОКОЛ MCP КАК АРХИТЕКТУРНАЯ ОСНОВА ДЛЯ РАЗРАБОТКИ AI-АГЕНТОВ

Воронежский государственный университет

Н. Р. Мишин

Аннотация. Статья посвящена архитектуре AI-агентов, построенных на основе языко-
вых моделей с возможностью подключения к внешним цифровым инструментам. Опи-
сываются функциональные компоненты таких агентов: механизм поиска информации, 
работа с памятью и выполнение действий через вызов инструментов. Представлен прото-
кол Model Context Protocol (MCP), обеспечивающий структурированное взаимодействие 
модели с внешними API, базами данных и сервисами. Приведен пример клиент-сервер-
ной архитектуры на основе MCP, а также описаны принципы интеграции новых инстру-
ментов для расширения возможностей языковой модели.
Ключевые слова: AI-агент, языковая модель, Model Context Protocol, Retrieval-Augmented 
Generation, MCP-клиент, MCP-сервер, протокол взаимодействия, клиент-серверная архи-
тектура, архитектура агентов, искусственный интеллект, обработка данных, инструменты.

Введение

Большие языковые модели открывают широкие возможности для автоматизации рутин-
ных задач, начиная от генерации текста и заканчивая многошаговой обработкой запросов. 
Однако для решения задач, выходящих за рамки генерации текста, требуется интеграция та-
ких моделей с внешними источниками данных. Поэтому в последние годы активно развивает-
ся подход, при котором большие языковые модели становятся частью AI-агентов. 

При этом на практике возникает проблема: современные модели не имеют прямого досту-
па к внешнему окружению, и для выполнения действий за пределами внутреннего контекста 
требуется организация интерфейса взаимодействия. Варианты интеграции моделей с API, ба-
зами данных, файловыми системами часто реализуются в виде специализированных реше-
ний, которые не имеют общего стандарта.

В качестве решения данной проблемы предлагается Model Context Protocol (MCP) — про-
токол, предназначенный для стандартизации обмена данными между языковой моделью и 
внешним миром.

В данной статье описываются принципы построения современных AI-агентов, особенно-
сти использования инструментов и памяти в их работе, а также механизм подключения язы-
ковой модели к цифровой инфраструктуре с помощью протокола MCP.

1. AI-агенты

Современные AI-агенты [1] представляют собой системы, которые способны не только ин-
терпретировать запросы, но и выполнять действия, запрашивать данные и сохранять инфор-
мацию в памяти. Архитектурно такие агенты строятся на основе языковой модели, расширен-
ной дополнительными механизмами.

Базовые языковые модели, на которых основаны такие агенты, обучаются на большом ко-
личестве текстовых данных и демонстрируют способность к обобщению и генерации осмыс-
ленных ответов. Однако без доступа к внешним источникам информации, программным ин-
терфейсам и памяти, их применимость остаётся ограниченной.

Чтобы преодолеть эти ограничения, в архитектуру агента добавляются функциональные 
модули, которые позволяют модели действовать динамически: выполнять вызовы к инстру-
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ментам, извлекать релевантные данные и учитывать накопленный контекст в процессе обще-
ния. Такое расширение превращает языковую модель в компонент не только рассуждающий, 
но и способный к действию.

Далее приведены три ключевые возможности AI-агентов.
Механизм поиска позволяет модели запрашивать информацию из внешней базы знаний: 

векторного хранилища или поискового индекса. Запрос формируется автоматически на ос-
нове исходного задания, и найденные фрагменты передаются обратно в модель в качестве до-
полнительного контекста. Такой подход известен как Retrieval-Augmented Generation (RAG) и 
позволяет агенту опираться не на память обученной модели, а на актуальные, обновляемые 
данные из базы знаний или документации.

Механизм памяти реализуется через сохранение промежуточной информации в кратковре-
менное или долговременное хранилище. Это может быть история диалогов, состояние задачи, 
факты о пользователе или внешние знания, полученные в процессе работы. При последующих 
обращениях память восстанавливается и включается в контекст. Таким образом достигается 
последовательность поведения агента и способность к межсессионному обучению.

Модель, интегрированная в агент, получает описание доступных инструментов в виде 
структурированных спецификаций (имя, параметры, результат) [2]. В процессе генерации 
модель может принять решение о необходимости вызова инструмента и сгенерировать со-
ответствующую инструкцию. Эта инструкция передаётся агентом на исполнение и результат 
возвращается обратно для последующей обработки в общий контекст. 

Такой механизм позволяет модели выходить за пределы обычной генерации, выполняя ре-
альные действия: запросы к API, SQL-запросы, манипуляции с файлами и так далее.

Однако, чтобы взаимодействие между моделью и внешними инструментами было управ-
ляемым и масштабируемым, необходим способ описания и вызова этих функций. Эту задачу 
решает протокол MCP.

2. Использование протокола MCP

Model Context Protocol (MCP) представляет собой механизм подключения внешних ин-
струментов к языковой модели [3]. Он реализует клиент-серверную архитектуру, в которой 
модель взаимодействует с промежуточным компонентом — MCP-клиентом, который коорди-
нирует обращения к одному или нескольким MCP-серверам. Каждый сервер предоставляет 
интерфейс к конкретному ресурсу: API, базе данных, файловой системе или вычислительному 
модулю. На рис. 1 представлена обобщённая схема архитектуры MCP:

Рис. 1. Архитектура MCP
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Взаимодействие между моделью и внешними компонентами по протоколу MCP осущест-
вляется в следующей последовательности:

1. MCP-клиент получает от подключённых серверов описания доступных инструментов 
(их имена, параметры, форматы ответов)

2. Спецификации инструментов передаются в контекст модели
3. Модель, обнаружив необходимость внешнего действия, формирует структуру вызова
4. MCP-клиент валидирует вызов, пересылает его на соответствующий MCP-сервер;
5. Сервер выполняет операцию и возвращает результат
6. Клиент передаёт результат обратно модели, которая продолжает рассуждение с учётом 

новых данных.
На рис. 2 показан пример такой последовательности в виде диаграммы запросов.

Коммуникация между компонентами основана на сериализованных форматах, как прави-
ло JSON, что обеспечивает межъязыковую совместимость и упрощает внедрение в существу-
ющие инфраструктуры. Модель не имеет прямого доступа к внешним сервисам. Все вызовы 
проходят через MCP-клиент, который обеспечивает проверку данных, маршрутизацию и кон-
троль выполнения.

Протокол поддерживает реализацию политик контроля доступа: можно ограничивать набор 
допустимых инструментов, проводить аутентификацию, журналировать вызовы и применять 
фильтрацию по параметрам. Такой подход особенно важен при использовании агента в сцена-
риях с доступом к конфиденциальным или критически важным ресурсам. Все команды модели 
проверяются до исполнения, что снижает вероятность ошибок и неправомерных действий.

Одним из ключевых преимуществ MCP является модульность. Разработчики могут добав-
лять новые инструменты без внесения изменений в модель. Достаточно развернуть соответ-
ствующий MCP-сервер и передать его описание клиенту. Модель автоматически получит до-

Рис. 2. Диаграмма запросов
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ступ к новой функциональности. Это упрощает масштабирование и повторное использование 
компонентов в разных системах.

Таким образом, MCP выступает в роли интерфейса между языковой моделью и окружа-
ющей средой. Он обеспечивает прозрачное, безопасное и управляемое выполнение внешних 
действий, расширяя возможности модели и позволяя строить полноценные AI-агенты.

Заключение

Агенты на основе языковых моделей находят всё более широкое применение в инженер-
ных и прикладных задачах, требующих не только понимания текста, но и взаимодействия с 
внешними источниками информации и сервисами. Эффективность таких систем определяет-
ся не только качеством самой модели, но и тем, насколько гибко и безопасно она может быть 
подключена к окружающей инфраструктуре.

Протокол MCP предоставляет структурированный способ организации такого взаимодей-
ствия. Он обеспечивает модульное, управляемое и расширяемое соединение между моделью 
и внешними инструментами. Такая архитектура позволяет создавать интеллектуальных аген-
тов, способных не просто отвечать на вопросы, но и инициировать действия, принимать ре-
шения и адаптироваться к задаче в процессе работы.

Использование языковых моделей в связке с MCP формирует основу для разработки си-
стем, где модель выступает не как продвинутый генератор текста, а как управляющий компо-
нент, координирующий работу с данными и инструментами.
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АЛГОРИТМЫ ОБУЧЕНИЯ С ПОДКРЕПЛЕНИЕМ 
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Аннотация. Рассмотрена общая постановка задачи, которую решают алгоритмы обуче-
ния с подкреплением. Даны соответствующие определения и обозначена специфика алго-
ритмов, где пространство действий непрерывно. Сделан обзор ряда алгоритмов обучения 
с подкреплением, которые работают с непрерывным пространством действий. Проведен 
краткий анализ соответствующих исследований, приведены ключевые формулы и выво-
ды. Сделан акцент на практической применимости соответствующих алгоритмов в при-
кладных задачах.
Ключевые слова: обучение с подкреплением, reinforcement learning, искусственный ин-
теллект, машинное обучение, марковский процесс принятия решений.

Введение

Обучение с подкреплением (англ. reinforcement learning) представляет собой класс алгорит-
мов обучения нейронных сетей без учителя, где коррекция весов модели происходит как реак-
ция на взаимодействие сети со средой. Другими словами, обучение с подкреплением позволяет 
модели «учиться на собственных ошибках», применяя действия к среде и оценивая (через за-
данную формулу наград) успешность примененного действия. Обучение с подкреплением нахо-
дит применение во множестве разнородных задач, начиная от игры в компьютерные игры (где 
входными данными могут служить пиксели экрана), управления механизмами на производстве 
и заканчивая управлением беспилотными автомобилями и роботизированными системами.

В работе рассматриваются алгоритмы обучения с подкреплением, работающие в непре-
рывном пространстве действий.

1. Общие положения

Существуют три основных парадигмы машинного обучения: обучение с учителем, обуче-
ние без учителя и обучение с подкреплением. Последняя интересна тем, что модель не требует 
размеченных данных (в отличие от обучения с учителем) и работает с набором данных, не 
заданным статически (как в случае с обучением без учителя). 

Модель обучения с подкреплением выполняет действия над средой посредством агента и 
оценивает успешность примененных действий через заданную формулу наград. Целью такой 
модели является максимизация получаемых наград. Иными словами, обучение с подкрепле-
нием можно определить как обучение через взаимодействие. Заметим, что сложности взаимо-
действия со средой инкапсулированы в агенте, что позволяет применять алгоритмы обучения 
с подкреплением в широчайшем спектре задач.

Математической основой алгоритмов обучения с подкреплением являются марковские 
процессы принятия решений (англ. Markov Decision Process, MDP) [1, с. 47–71]. В рамках фор-
мализма MDP в каждый момент дискретного времени 0,1,2,...t =  агент взаимодействует со 
средой, описываемой состоянием tS S∈  и на основе него выбирает действие .tA A∈  На после-
дующем шаге агент получает численную награду 1tR R+ ∈ ⊂ℜ  и оказывается в новом состоя-
нии 1tS S+ ∈  (рис. 1).
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Таким образом, процесс MDP описывается:
• множеством состояний S  и распределением стартовых состояний 0( );p S
• множеством действий ;A
• динамикой переходов 1( | , ),t t tP S S A+  отображающей пару «состояние–действие» в мо-

мент времени t  на распределение состояний в момент времени 1;t +
• функцией мгновенных наград 1( , , );t t tR S A S +

• коэффициентом дисконтирования [0,1].γ ∈

Эпизодом (траекторией) длины T  называется последовательность состояний, действий и 
наград, которая заканчивается конечным состоянием. В конце каждого эпизода вычисляется 
общая дисконтированная награда вида 
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Политика π  является в общем случае вероятностным отображением множества состоя-

ний на множество действий вида : ( | ).S p A a Sπ → =  Целью агента является нахождение та-
кой политики *,π  которая приведет к максимизации ожидаемых дисконтированных сумм на-
град: * arg max [ | ].E G

π
π π=

Функция (1) называется функцией ценности «состояние-действие». В работах также часто 
используется функция (2), которая называется функцией ценности состояния:
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В контексте обучения с подкреплением важным является марковское свойство стохастиче-
ского процесса, утверждающее, что условное распределение вероятностей будущих состояний 
процесса зависят только от текущего состояния и не зависят от истории предыдущих состояний.

Простейшие алгоритмы обучения с подкреплением подразумевают дискретные множества 
A  и S  (такие алгоритмы часто реализуются методами динамического программирования; см., 
например, Q–Learning [2]). Помимо них есть алгоритмы, работающие с непрерывным множе-
ством состояний, но с дискретным множеством действий A  (известным примером таких ал-
горитмов является DQN [3]). Данное исследование фокусируется на алгоритмах, работающих 
с непрерывным множеством действий.

Рис. 1. Взаимодействие агента и среды в марковском процессе принятия решений
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2. Классификация моделей обучения с подкреплением, работающих 
с непрерывным пространством действий

2.1. Алгоритмы на основе градиента политики

Методы на основе градиента политики предполагают, что политика π  задана вектором 
параметров '.dθ ∈ℜ  Предлагается использовать некоторую оценку эффективности ( ),J θ  ко-
торая используется для обновления параметров политики:

	 1 ( ),t t tJθ θ α θ+ = + ∇ 	 (3)
где выражение '( ) d

tJ θ∇ ∈ℜ  представляет случайную оценку, чье математическое ожидание 
аппроксимирует соответствующий градиент оценки ( ).tJ θ

Алгоритм REINFORCE [4] использует семплирование методом Монте-Карло для получе-
ния эмпирической оценки ожидаемых наград. Правило обновления параметров политики в 
алгоритме REINFORCE выглядит следующим образом: 1 ln ( | , ).t t t t t tG A Sθθ θ α π θ+ = + ∇  В силу 
использования алгоритма Монте-Карло на практике алгоритм REINFORCE может показывать 
медленную скорость обучения. Низкая скорость обучения обусловлена как необходимостью 
прогона полного эпизода для того, чтобы вычислить новый градиент, так и большой выбороч-
ной дисперсией.

В качестве одной из оптимизаций алгоритма предлагается использовать методику опор-
ных точек (англ. baseline). Основная идея методики в том, что в правиле REINFORCE (1) вме-
сто прямых дисконтированных наград tG  используются выражения ,tG b−  где параметр b 
подбирается эвристически. 

Последующие исследования проблем скорости обучения и практической сходимости алго-
ритмов на основе градиента политики породили метод натурального градиента политики 
(англ. Natural Policy Gradient). В работе [5] автор показывает, что движение в сторону увеличе-
ния градиента относительно параметров θ  ведет в общем случае к нестабильности алгоритма, 
поскольку не учитывает кривизну распределения политики ( ),π θ  так что малому изменению 
параметров «в сторону» увеличения градиента может соответствовать драматически неопти-
мальное изменение величины ( ).π θ θ+ ∆  Чтобы решить проблему неоптимальных шагов в [6] 
предлагается использовать информационную метрику Фишера. Таким образом, натуральный 
градиент имеет вид (4): 

	 1ˆ ( ) ( ) ( ),J F Jθ θ θ−∇ = ∇ 	 (4)
где матрица метрики Фишера локально может быть представлена через расстояние Кульба-
ка — Лейблера [6]:

	 2
0

( ) ( ( ) || ( )) ,KLF D x xθ θ θ θ θ
θ π π +∆ ∆ =

= ∇ 	 (5)
и в результате правило обновления параметров (1) принимает вид (4):
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∇ ∇
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2.2. Алгоритмы «актор-критик»

Алгоритмы «актор-критик» являются логическим продолжением и улучшением алгорит-
мов на основе градиента политики. Вместо оценки функции ценности ( , )Q s aπ  посредством 
семплирования (как в случае REINFORCE), алгоритмы «актор-критик» ее аппроксимируют 
(как правило, нейронной сетью). Сеть, которая аппроксимирует функцию ценности ( , ),Q s aπ  
называется критиком, аппроксиматор политики ( | )s aθπ  называется актором.
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В алгоритме DPG (Deterministic Policy Gradient) [7] стохастическую политику 
: ( | )S p A a Sθ θπ → =  предлагается заменить детерминированной политикой вида : .S Aθµ →  

В работе [7] показывается, что в этом случае 
( )

( ) ( , ) ( , ) .a a s
J E s Q s aθ µ θ µ
θ µ θ

=
 ∇ ≈ ∇ ⋅∇   Для того, 

чтобы обеспечить исследовательское поведение в детерминированном алгоритме, к выходу 
актора явным образом добавляется случайный шум (например, в виде стохастического про-
цесса Орнштейна — Уленбека). Алгоритм представляет интерес, в основном, с теоретической 
точки зрения; с практической точки зрения куда более известен его наследник — Deep DPG 
(DDPG) [8].

DDPG сочетает теоретическую базу работы [7] (в частности, теорему о градиенте детер-
минированной политики) с практическими успехами сети DQN [3], показавшей выдающийся 
для своего времени результат устойчивой сходимости глубокой нейронной сети. В частности, 
использованы следующие особенности:

• Вводится вторая пара сетей «актор-критик» (называемые целевыми), которые обучаются 
с меньшим шагом обучения.

• Вводится буфер воспроизведения (англ. experience replay buffer) вида , , , ' ,D s a r s=  ко-
торый пополняется новым кортежем после каждого перехода из состояния s  в ',s  получив 
награду .r  Буфер организован по принципу кольцевой памяти, т. е. количество кортежей огра-
ничено, и наиболее старые записи исчезают при переполнении.

• Обучение мини-пакетами (англ. mini-batching), когда данные для обучения «вне полити-
ки» семплируются по подмножеству буфера воспроизведения ' .D D⊂

В DDPG критик обучается в режиме «вне политики» (англ. off-policy), используя адаптиро-
ванный вариант Q–learning. В качестве функции потерь используется (7):

	 ( ) ( ) ( )( )( ) 2

1 1
'

( ) , | , , ( ) | ,Q Q Q
t t t t t t

D
L E Q s a r s a Q s sβθ θ γ µ θ+ +

 = − +  
	 (7)

где β  — отдельная стохастическая политика.
Алгоритм TD3 (Twin-Delayed DDPG) является значительным улучшением алгоритма 

DDPG. Авторы в [9] показывают, что алгоритмы «актор-критик» подвержены проблеме си-
стематического завышения оценки (англ. overestimation bias), которая ранее была исследована 
[10] в контексте табличных алгоритмов Q–learning. Авторы алгоритма TD3 предложили три 
меры улучшения:

• Использование двух критиков для оценки сверху максимально возможной ценности. 
Оценка сверху имеет вид (8):

	 ( )
1,2

min , ,
ii

y r Q s aθγ ′
=

′ ′= + 	 (8)

где iθ  — вектор параметров i-го критика.
• Регуляризация сглаживания целевой политики. Авторы утверждают, что модель актора 

чувствительна к неточностям аппроксимирующей функции и переобучение пиковыми значе-
ниями ценности является проблемой. В качестве решения предлагается дополнительно обу-
чать модель на узких областях вокруг точки целевого действия:

	 ( ), .y r E Q s aε θ ε′ ′ ′= + +   	 (9)
• Задержка в обновлении целевых сетей. Как и оригинальный алгоритм DDPG, TD3 ис-

пользует как «основные» сети «актор-критик», так и т. н. целевые сети (с учетом вышеуказан-
ных правок, в каждой из них по два критика). Новым является замечание, что целевые сети не 
должны обновляться при каждом обновлении весов основной модели. В оригинальной работе 
предлагается обновлять их при каждом втором обновлении, но говоря вообще, эта частота 
может считаться гиперпараметром.
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Заключение

В работе представлен краткий анализ некоторых наиболее известных алгоритмов обучения 
с подкреплением, которые работают с непрерывным пространством действий. В частности, 
рассмотрен классический алгоритм REINFORCE, рассмотрены решения на основе градиентов 
политики и представлены алгоритмы на основе архитектуры «актор-критик». Приведены ос-
новополагающие идеи и уравнения, лежащие в основании алгоритмов. 
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УДК 004.9

ТЕХНОЛОГИИ ДОПОЛНЕННОЙ РЕАЛЬНОСТИ В АРХИТЕКТУРЕ: 
ВОЗМОЖНОСТИ И ПЕРСПЕКТИВЫ

Воронежский государственный университет

П. А. Никольникова

Аннотация. В статье рассматриваются возможности и перспективы применения тех-
нологий дополненной реальности (AR) в архитектурно-строительной отрасли. Описы-
ваются основные методы AR-визуализации, принципы реалистичного рендеринга и 
композитинга, а также методы отображения. Анализируются конкретные сценарии ис-
пользования AR в строительстве, охватывающие визуализацию и контроль соответствия 
проекту, предоставление пошаговых инструкций, контроль качества, повышение безо-
пасности и улучшение совместной работы. Особое внимание уделяется перспективам 
развития AR, включая ее интеграцию с искусственным интеллектом (ИИ) и Интернетом 
вещей (IoT), создание цифровых двойников строительных площадок и расширение при-
менения в градостроительстве и реставрации архитектурного наследия.
Ключевые слова: дополненная реальность (AR), архитектура, визуализация, маркерное 
отслеживание, безмаркерное отслеживание, рендеринг, окклюзия, цифровой двойник, 
Искусственный интеллект (ИИ), Интернет вещей (IoT), градостроительство, реставра-
ция, проектирование.

Введение

Архитектурно-строительная отрасль находится в постоянном поиске инновационных реше-
ний для повышения эффективности проектирования, строительства и управления эксплуата-
цией объектов. В этом контексте цифровые технологии играют ключевую роль. Можно выде-
лить одну из наиболее перспективных технологий — технология дополненной реальность (AR).

В отличие от виртуальной реальности (VR), которая полностью погружает пользователя в 
синтетическую среду, AR накладывает сгенерированные цифровые объекты на реальное фи-
зическое окружение в режиме реального времени. Этот подход позволяет инженерам, архи-
текторам и строителям взаимодействовать с цифровым контентом, сохраняя при этом осве-
домленность о физическом пространстве.

Актуальность AR в архитектуре подкрепляется и общеотраслевыми трендами: повышением 
требований к детализации, необходимостью сокращения сроков строительства, повышением 
стандартов безопасности и стремлением к минимизации ошибок на этапе реализации. Внедре-
ние дополненной реальности становится не просто технологическим экспериментом, а стра-
тегическим инструментом, способным кардинально изменить привычные рабочие процессы.

1. Основные методы визуализации в AR

Эффективность дополненной реальности в архитектуре напрямую зависит от качества и 
реалистичности наложения виртуального контента на физическое окружение. Это достига-
ется за счет комплекса методов, охватывающих отслеживание, рендеринг и композитинг, а 
также учет физических свойств света и геометрии.

1.1. Методы отслеживания и регистрации

Основой любой AR-системы является точное и стабильное определение положения и ори-
ентации камеры или устройства пользователя в реальном мире. Без надежного отслеживания 
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виртуальные объекты будут «дрейфовать», нарушая иллюзию дополненной реальности. Раз-
личают два основных подхода:

• маркерное отслеживание: этот метод использует заранее известные графические марке-
ры (например, QR-коды, AR-метки), размещенные в реальном окружении. Камера устройства 
распознает эти маркеры, вычисляет их положение и ориентацию в пространстве, а затем ис-
пользует эту информацию для точного позиционирования виртуальных объектов относи-
тельно маркера.

– преимущества: высокая точность, относительная простота реализации, устойчивость к 
изменяющимся условиям освещения при хорошем дизайне маркера;

– недостатки: требует физического размещения маркеров, ограничивает область взаимо-
действия, не подходит для широкомасштабных сценариев;

– применение в архитектуре: визуализация 3D-модели здания на печатном плане, демон-
страция интерьера на маркере, расположенном на столе;

• безмаркерное отслеживание: этот более продвинутый метод не требует предваритель-
но размещенных маркеров. Он использует алгоритмы Simultaneous Localization and Mapping 
(SLAM) для одновременной локализации устройства в пространстве и построения карты 
окружающей среды. Система анализирует визуальные особенности (ключевые точки/призна-
ки) из видеопотока камеры, сопоставляет их в последовательных кадрах и на основе этих дан-
ных вычисляет движение камеры и создает трехмерную карту.

– преимущества: полная свобода перемещения, возможность визуализации в произволь-
ных пространствах (от открытой строительной площадки до пустого помещения), масштаби-
руемость;

– недостатки: высокая вычислительная сложность, чувствительность к однородным тек-
стурам, резким изменениям освещения и быстрым движениям, потенциальный «дрейф» (на-
копление ошибки позиционирования со временем);

– применение в архитектуре: размещение полномасштабной виртуальной модели здания 
на пустом земельном участке, интерактивная «прогулка» по будущему интерьеру в существу-
ющем помещении, наложение инженерных сетей на незавершенные конструкции на стройке.

1.2. Методы рендеринга и композитинга

После того как положение и ориентация AR-устройства в пространстве определены, сле-
дующим шагом является реалистичное отображение цифровых архитектурных моделей и их 
бесшовное слияние с видеопотоком реального мира. Этот процесс включает в себя:

• оптимизацию 3D-моделей: архитектурные BIM-модели часто содержат избыточное коли-
чество полигонов, сложные материалы и высококачественные текстуры, что делает их непри-
годными для рендеринга в реальном времени на мобильных или AR-гарнитурах. Для AR-ви-
зуализации требуется существенная оптимизация:

– уменьшение полигонажа: использование алгоритмов для сокращения количества вер-
шин и граней без значительной потери визуальной детализации;

– уровни детализации: Отображение упрощенных версий модели, когда объект находится 
далеко от пользователя, и более детализированных версий при приближении;

– оптимизация текстур и материалов: сжатие текстур, использование атласов текстур, пре-
образование Physically Based Rendering (PBR) материалов в более легковесные шейдеры для 
мобильных платформ;

• реалистичное освещение и тени: для создания иллюзии принадлежности виртуального 
объекта реальному миру необходимо, чтобы он корректно освещался и отбрасывал тени, со-
ответствующие реальному окружению:



342

– оценка освещения окружения: современные AR-SDK могут анализировать видеопоток 
камеры для оценки параметров реального освещения (направление, интенсивность, цвет) и 
применять их к виртуальным объектам;

– динамические тени: виртуальные объекты должны отбрасывать тени на реальные по-
верхности, а также на другие виртуальные объекты. Это требует сложных алгоритмов ренде-
ринга теней в реальном времени, таких как Shadow Mapping или Volumetric Shadows;

• окклюзия: один из самых сложных аспектов реалистичной AR-визуализации. Окклюзия 
означает правильное перекрытие объектов:

– виртуальные объекты, перекрывающие реальные: это относительно просто реализуется 
через буфер глубины, когда виртуальный объект рисуется поверх реального;

– реальные объекты, перекрывающие виртуальные: это значительно сложнее и требует ин-
формации о глубине реального мира;

– семантическая окклюзия: с использованием алгоритмов компьютерного зрения и ма-
шинного обучения для распознавания и сегментации реальных объектов (например, людей, 
мебели) и их последующего использования в качестве маски для виртуальных объектов.

1.3. Методы отображения

Способ, которым пользователь воспринимает дополненную реальность, также имеет ре-
шающее значение:

• Video See-Through (VST) Displays: камера устройства захватывает реальный мир, а затем 
видеопоток с наложенными виртуальными объектами отображается на экране.

– преимущества: широкая доступность, относительно низкая стоимость, высокое качество 
картинки с камеры;

– недостатки: непрямое взаимодействие с реальным миром («смотреть через экран»), огра-
ниченное поле зрения, необходимость держать устройство в руках;

• Optical See-Through (OST) Displays: Пользователь смотрит на реальный мир через про-
зрачные линзы, а виртуальные изображения проецируются непосредственно в его поле зре-
ния.

– преимущества: прямое восприятие реального мира, возможность работы без рук, более 
естественное ощущение «присутствия» виртуальных объектов;

– недостатки: высокая стоимость, ограниченное поле зрения (FOV), потенциальные про-
блемы с яркостью виртуальных объектов при ярком внешнем освещении, громоздкость.

2. Использование AR в строительстве

Технологии дополненной реальности (AR) находят все более широкое применение не толь-
ко на этапах проектирования и визуализации, но и в реальном строительном процессе, а так-
же на протяжении всего жизненного цикла здания, включая его эксплуатацию и техническое 
обслуживание. AR трансформирует традиционные подходы, предлагая новые инструменты 
для повышения эффективности, точности и безопасности работ.

2.1. Визуализация и контроль соответствия проекту

Одним из ключевых преимуществ AR на этапе строительства является возможность на-
ложения цифровых информационных моделей зданий (BIM) или 3D-моделей непосредствен-
но на реальную физическую среду. Рабочие и инженеры могут использовать планшеты или 
AR-очки для:
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• визуализации проекта в масштабе 1:1: наложение виртуальных элементов (стен, комму-
никаций, оборудования) на реальную площадку позволяет оперативно выявлять потенциаль-
ные коллизии и отклонения от проектной документации до их физического воплощения;

• проверки соответствия: быстрая оценка точности выполнения работ путем сравнения 
построенных элементов с их цифровыми двойниками;

• оптимизации размещения: AR может помочь в оптимальном расположении строитель-
ной техники, материалов и временных сооружений на площадке, улучшая логистику и безо-
пасность.

2.2. Пошаговые инструкции и контроль качества

AR может служить мощным инструментом для предоставления рабочих инструкций и по-
вышения качества выполнения задач:

• виртуальные инструкции: сложные монтажные операции могут быть разбиты на поша-
говые виртуальные руководства, наложенные на рабочую среду. Это особенно полезно для 
обучения новых сотрудников или выполнения специализированных задач;

• контроль допусков: специалисты могут использовать AR для измерения и проверки ге-
ометрических параметров элементов в реальном времени, обеспечивая соответствие строи-
тельным нормам и допускам;

• мониторинг прогресса: наложение проектных планов на текущее состояние стройки по-
зволяет визуально отслеживать прогресс выполнения работ и выявлять отставания.

2.3. Повышение безопасности и совместной работы

AR способствует созданию более безопасной рабочей среды и улучшает коммуникацию 
между участниками проекта:

• визуализация опасностей: AR-системы могут выделять потенциально опасные зоны, на-
пример, маршруты движения тяжелой техники, зоны работы кранов или места хранения опас-
ных материалов;

• удаленная поддержка: опытные инженеры или консультанты могут предоставлять уда-
ленную поддержку рабочим на месте, видя ту же AR-сцену, что и пользователь, и давая голо-
совые или визуальные указания;

• улучшенная коммуникация: общие AR-модели могут служить единым источником ин-
формации для всех участников проекта, минимизируя недопонимание и ошибки, вызванные 
устаревшими версиями чертежей или устными описаниями.

3. Перспективы развития AR-технологий в архитектуре

3.1. Интеграция с ИИ и IoT

Сочетание AR с искусственным интеллектом (ИИ) и интернетом вещей (IoT) открывает 
новые возможности для анализа данных в реальном времени и автоматизации процессов. На-
пример, ИИ может обрабатывать информацию с датчиков на стройплощадке, погодные усло-
вия и чертежи, предлагая оптимальные решения для инженерных задач.

IoT позволяет подключать физические объекты к цифровым моделям, что особенно полез-
но для мониторинга состояния зданий и планирования ремонтных работ. Виртуальные эле-
менты, наложенные на реальное окружение, помогают определить местоположение скрытых 
систем и элементов конструкции.
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3.2. Развитие цифровых двойников стройплощадок

Концепция цифровых двойников в строительстве — это динамическая виртуальная ре-
пликация физической строительной площадки с обновлением данных в реальном времени. 
В отличие от статичных BIM моделей, цифровой двойник интегрирует множество источни-
ков: BIM-модель, данные IoT-датчиков, геопространственные данные, информацию о про-
грессе работ, персонале, безопасности, план графики и бюджеты. Это позволяет отслеживать, 
анализировать и оптимизировать все аспекты строительного процесса с высокой точностью.

Создание и поддержание цифрового двойника требует комплекса технологий: BIM, IoT, 
лазерного сканирования, дронов, облачных вычислений, ИИ и AR/VR. IoT собирает данные с 
устройств, облачные вычисления обеспечивают масштабируемость и удалённый доступ, ИИ 
анализирует информацию и прогнозирует проблемы, а AR и VR визуализируют данные на 
месте и позволяют погружаться в виртуальные модели для планирования и обучения. Такие 
технологии повышают безопасность, сокращают сроки и затраты, улучшают качество управ-
ления строительством.

3.3. Расширение применения в градостроительстве и реставрации

В градостроительстве AR используется для визуализации проектов городского развития, 
оценки их воздействия на окружающую среду и улучшения взаимодействия с общественно-
стью. Это позволяет более точно планировать новые объекты и инфраструктурные элементы, 
учитывая их влияние на пешеходные потоки, транспортную доступность и другие аспекты 
городской среды.

В управлении городской инфраструктурой AR помогает визуализировать подземные ком-
муникации, что критически важно для ремонтных работ и прокладки новых сетей. Интерак-
тивные карты и навигация, созданные с использованием AR, улучшают ориентацию горожан 
и предоставляют информацию о достопримечательностях и общественном транспорте. Ситу-
ационное моделирование на основе данных из IoT-датчиков позволяет службам быстро реаги-
ровать на чрезвычайные ситуации и эффективно планировать городские мероприятия.

В реставрации архитектурного наследия AR играет ключевую роль в документировании 
состояния объектов, визуализации скрытых элементов и планировании работ. С помощью 
AR реставраторы могут накладывать исторические чертежи и 3D-сканы на текущее состоя-
ние здания, что помогает выявить повреждения и деформации. Виртуальная реконструкция 
позволяет наглядно представить первоначальный облик разрушенных зданий, а пошаговые 
инструкции, отображаемые на рабочей поверхности, упрощают сложные реставрационные 
процессы.

Заключение

Технологии дополненной реальности становятся ключевым инструментом трансформа-
ции архитектурно-строительной отрасли. Интеграция AR с другими инновационными реше-
ниями, такими как искусственный интеллект и интернет вещей, открывает новые горизонты 
для проектирования, строительства и эксплуатации объектов. Это позволяет создавать более 
точные и детализированные модели, а также оптимизировать рабочие процессы и снижать 
затраты.

AR-технологии находят применение в различных аспектах архитектурной деятельности, 
начиная от визуализации проектов и заканчивая контролем строительства и техническим 
обслуживанием. Они значительно повышают точность проектирования, ускоряют процесс 
реализации проектов и улучшают коммуникацию между всеми участниками. В результате, 
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использование AR способствует повышению качества и эффективности работы в архитектур-
но-строительной сфере, делая её более конкурентоспособной и инновационной.
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УДК 004.056

КЛАСТЕРИЗАЦИЯ НА ОСНОВЕ НЕЧЕТКИХ МЕТРИК

Воронежский государственный университет

М. В. Оборотов, Т. М. Леденева

Аннотация. В работе исследуется задача повышения эффективности кластеризации дан-
ных в условиях нечеткости и размытых границ между кластерами. Для этого предлага-
ется использование нечетких метрик, построенных на основе аддитивных генераторов и 
архимедовых треугольных норм. Рассмотрены теоретические основы аддитивных генера-
торов, треугольных норм и конорм, получены конкретные виды нечетких метрик. Про-
веден вычислительный эксперимент по нечеткой кластеризации синтетических данных с 
использованием алгоритма нечетких K-медоид и предложенных метрик. Результаты экс-
перимента демонстрируют качественное разбиение данных даже в условиях значитель-
ного перекрытия кластеров, что подтверждает перспективность предложенного подхода 
для анализа сложно структурированных данных.
Ключевые слова: нечеткая кластеризация, нечеткая метрика, аддитивный генератор, тре-
угольная норма, треугольная конорма, архимедова норма, K-медоид, функция расстояния.

Введение

Одной из центральных задач анализа данных является разбиение множества объектов 
на группы схожих элементов. Традиционные методы кластеризации часто оказываются не-
эффективными, когда границы между кластерами размыты, а данные обладают высокой сте-
пенью неопределенности. В таких случаях более адекватными оказываются методы нечеткой 
кластеризации, позволяющие объекту принадлежать нескольким кластерам одновременно с 
различной степенью.

Особый интерес представляют методы, основанные на нечетких метриках, которые, в от-
личие от классических, отражают степень сходства между объектами. Использование нечет-
ких метрик, порожденных некоторыми классами генераторов, позволяет адаптироваться к 
особенностям конкретной задачи.

Целью данной статьи является исследование возможности улучшения результатов класте-
ризации за счет применения нечетких метрик, построенных на основе аддитивных генерато-
ров из класса рациональных функций. Для достижения этой цели в работе решаются следу-
ющие задачи: изложение общей теории аддитивных генераторов и треугольных норм; вывод 
конкретных формул для нечетких метрик и функций расстояния; проведение вычислительно-
го эксперимента по кластеризации синтетических данных с использованием модифицирован-
ного алгоритма нечетких K-медоид.

1. Общая теория треугольных норм и их представление 
с помощью аддитивных генераторов

Основными операциями в нечеткой логике, обобщающими логические связки «И» и 
«ИЛИ», являются треугольные нормы (T-нормы) и треугольные конормы (S-нормы). Рассмо-
трим соответствующие определения из [1].

Определение 1. Треугольной нормой (T-нормой) называется операция :[0,1] [0,1] [0,1]T × →  
удовлетворяющая условиям:

1. ( , )  ( , );T x y T y x=
2. ( ( , ), )  ( , ( , ));T T x y z T x T y z=
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3. (0,0)  0, ( ,1)  (1, )  ;T T x T x x= = =
4. (   ) (   )  ( , )  ( , ).x t y z T x y T t z≤ ∧ ≤ ⇒ ≤
Определение 2. Треугольной конормой (S-нормой) называется бинарная операция 

:[0,1] [0,1] [0,1],S × →  удовлетворяющая условиям коммутативности, ассоциативности, моно-
тонности и граничному условию (1,1) 1 , ( ,0)  (0, )  .S S x S x x= = =

Важным классом T-норм и S-норм являются архимедовы нормы, которые могут быть по-
строены с помощью аддитивных генераторов, указанных в [1].

Утверждение 1. Операция 2: [0,1]  [0,1] T →  является архимедовой T-нормой тогда и только 
тогда, когда существует убывающий генератор ( ),t x  такой что

	 ( ) ( )1( , )   ( )  ( ) .T x y t t x t y−= + 	 (1)
Утверждение 2. Операция 2:[0,1]  [0,1] S →  является архимедовой S-нормой тогда и только 

тогда, когда существует возрастающий генератор ( ),s x  такой что
	 ( ) ( )1( , )   ( )  ( ) .S x y s s x s y−= + 	 (2)
Определение 3. Убывающим генератором называется строго убывающая непрерывная 

функция :[0,1] [0, ),ϕ↓ → ∞  такая что (1)  0.ϕ↓ =
Определение 4. Возрастающим генератором называется строго возрастающая непрерыв-

ная функция : [0,1] [0, ),ϕ↑ → ∞  такая что (0)  0.ϕ↑ =
Также рассмотрим определение псевдообратного аддитивного генератора из [1].
Определение 5. Функция ( )1 : [0, ) [0,1],ϕ −

↑ ∞ →  такая, что

	 ( )

( )
1

1 ( ),    0, (1) ,
( )   

1    (1),

x x
x

x

ϕ ϕ
ϕ

ϕ

−
↑ ↑−

↑
↑

 ∈   =
∈ ∞

åñëè

åñëè
	 (3)

называется псевдообратной для ( )xϕ↑

Определение 6. Функция ( )1 : [0, ) [0,1],ϕ −
↓ ∞ →  такая, что

	 ( )

( )
1

1 ( ),    0, (0) ,
( )   

0    (0),

x x
x

x

ϕ ϕ
ϕ

ϕ

−
↓ ↓−

↓
↓

 ∈   =
∈ ∞

åñëè

åñëè
	 (4)

называется псевдообратной для ( )xϕ↓
Воспользуемся понятием нечеткой T-метрики из [2]. 
Определение 7. Пусть U  — произвольное множество, T  — непрерывная треугольная нор-

ма, M  — нечеткое множество на     (0, ) U U× × ∞  с функцией принадлежности, удовлетворяю-
щей следующим свойствам для , ,    x y z U∀ ∈ и ,   0:u v∀ >

1. , ,   (0,1];( )Mµ x y u ∈
2. , ,  1 ( )  Mµ x y u =  тогда и только тогда, когда   ;x y=
3. , ,   , , ; ( ) ( )M Mµ x y u µ y x u=
4. ( , , , , , )  , ,  ;( ) ( ) ( )M M MT µ x y u µ y z v µ x z u v≤ +
5. , ,·  : (0, )  [0,1] ( )Mµ x y ∞ →  — непрерывная функция,

тогда Mµ  называется нечеткой T-метрикой. 
Рассмотрим пару двойственных треугольных норм и конорм. Если R  является отношени-

ем подобия, обладающим свойством ( )max T− -транзитивности, тогда, как указано в [1], мож-
но построить R̂  — отношение различие, обладающим свойством ( )min S− - транзитивности, 
где ,  1 , . ( ) ( )M Mr x y µ x y= −  В [6] предлагается представление нечеткой метрики. 

Утверждение 3. Пусть U  — произвольное множество,  :    [0, )  d U U× → ∞  — метрика или 
псевдометрика на ,U    : (0, )  (0, ) ϕ ∞ → ∞  — возрастающая функция, T  — непрерывная архи-
медова треугольная норма с аддитивным генератором ,t  тогда существует нечеткая метрика в 
форме нечеткого множества M  с функцией принадлежности 
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	 ( ) ( )
( )

( 1) ,
, ,     .M

d x y
µ x y u t

uϕ
−  

=   
 

2. Пример построения нечеткой метрики

Рассмотрим дробно-линейную функцию

	 ( )  .
 1p

x px C
px

ϕ +
= +

+
	 (5)

Воспользуемся условиями (1)  0,  (0)  0ϕ ϕ↓ ↑= =  для нахождения констант:

	

1   (1)    1   0    1, 
  1 

(0)         0   .
1

p

p

p C C C
p
p C p C C p

ϕ

ϕ

↓

↑

+
= + = + = ⇒ =−

+

= + = + = ⇒ = −
	 (6)

Для исследования свойства монотонности воспользуемся свойствами из [3]. Найдем про-
изводную функции :ϕ

	
2 2

2 2 2

(1)(  1 ) ( )( ) 1 1  ( )      ,
(  1) (  1) (  1)p

px x p p px px p px
px px px

ϕ + − + + − − −′ = = =
+ + +

	 (7)

откуда получим, что ( )p xϕ  строго возрастает при  ( 1,1) p∈ −  и строго убывает при
  ( , 1) (1, ).p∈ −∞ − ∪ +∞  Учитывая непрерывность функции и область определения для убывающе-

го генератора получим интервал для параметра  (1, ),p∈ +∞  так как ,

(1  ) (0 1)(0)   1,
1  0p

p p
p

ϕ↓

− −
= = −

+
 

а неравенство 0 1p≤ − ≤ +∞  влечет неравенство 1 .p≤ ≤ +∞  В итоге получим на основе опреде-
лений 3 и 4 убывающие генераторы

	
,

,

(1  ) ( 1)( ) ,  (1, )
1  

1( ) ,

,p

p xx p
px

xx
x

ϕ

ϕ

↓

↓ +∞

− −
= ∈ +∞

+
−

=
	 (8)

и возрастающий генератор

	 ,

(1 )(0 1)(0)   1.
1  0p

p p
p

ϕ↓

− −
= = −

+
	 (9)

Найдем соответствующие псевдообратные функции

	

( )

( )

1
,

1
,

1 ,   [0, 1] ,
 1 ( )   
0,    ( 1, );
1( ) ;

1

p

p x x p
p pxx

x p

x
x

ϕ

ϕ

−
↓

−
↓ +∞

− + ∈ − − −= 
 ∈ − ∞

=
+

åñëè

åñëè 	 (10)

	 ( )1 2
,

,    [0,1 ],
 1 ( ) 
1,    (1 , ).

p

x x p
p pxx

x p
ϕ −
↑

 ∈ − − −= 
 ∈ − ∞

åñëè

åñëè

	 (11)

Рассмотрим графики генераторов (8)–(11) в [0,1] [0,1].×
Если аддитивные генераторы известны, то на основе утверждений 1 и 2 можно построить 

соответствующие им нечеткие операции — архимедовы S-конормы и T-нормы. В данном слу-
чае они имеют следующий вид:
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2

2

2 2

 2,   ,  ( 1,1);  
1 

 ,   ;
 
 1 ( 2 ),  ,    (1, ).

( )

( )

( )
( )1 2

p

p

x y pxyS x y p
p xy
xyT x y

x y xy
x y p p xyT x y p

p p xy p x y

+∞

+ +
= ∈ −

−

=
+ −

+ − + +
= ∈ +∞

+ − + +

	 (12)

Воспользовавшись примерами аддитивных генераторов, соответствующих архимедовым 
T-нормам, найдем примеры нечетких метрик, общая формула которых представлена в утверж-
дении 3.

	

,

,

( , )1
( , )( ) ,     [0,  1],( , ) ( )1, ,  ( )
( , )0,    (  1, ).
( )

1 , ,  .

)

( ,

(

( ) )1
( )

M p

M

d x yp
d x yu pd x y up pµ x y u u
d x y p

u

µ x y u d x y
u

ϕ
ϕ

ϕ

ϕ

ϕ

+∞

 − +
∈ −

 − −= 

 ∈ − ∞


=
+

åñëè

åñëè
	 (13)

На основе данных метрик получим функции расстояния

	

( )
,

,

(1 ) ( , ) ( , ) ,    [0,  1] ,
( , ) ( ) ( ) ( )

 , ,
( , )1,    (  1, ),
( )

( , ) , ,  .
(

(

,

)

)
) ( )

(

M p

M

p d x y d x y p
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Рис. 1. Графики аддитивных генераторов и их псевдообратных функций
(левый график при   0.5p=−  для возрастающего, правый график при   2.75 p= для убывающего)
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3. Результаты вычислительного эксперимента

Пусть задано множество объектов 1{ ,..., },nX x x=  где каждый объект ix  описывается век-
тором признаков 1 2  ( , , ..., ).i i i idx x x x=  Для оценки близости объектов используется функция 
расстояния ( , ).i jd x x  Найдем разбиение множества объектов X  на группы (классы, кластеры) 
близких объектов в смысле расстояния ( , ),i jd x x  при этом искомое разбиение должно удов-
летворять следующим свойствам:  

1)    iC ≠∅  (каждый кластер не пуст); 
2)    i jC C∩ =∅  при      i j≠ (кластеры не пересекаются в случае жёсткой кластеризации); 

3) 
1

  
k

i
i

C X
=

=


 (все объекты принадлежат какому-то кластеру).

Для тестирования метрик воспользуемся алгоритмом нечетких K-медоид из [5], так как 
данный алгоритм позволяет использовать произвольную метрику. Рассмотрим метрику с рас-
стоянием Евклида 2

1
( , )  (   )n

i ii
d x y x y

=
= −∑  и ( )  .u uϕ =  Протестируем алгоритм на синтетиче-

ских данных, чтобы установить влияние метрики на возможность выделить пересекающиеся 
в разной степени кластеры. 

В ходе визуализации полученных метрик были выделены несколько отличительных гра-
фиков. Так, поверхность, изображенная на рис. 2, можно использовать для оценки индика-
ции сходства объектов, а поверхность, рассматриваемая на рис. 3, соответствует задаче, когда 
оценка различий между наблюдениями основывается на позиции оптимизма.

Проведенный вычислительный эксперимент позволил оценить эффективность предло-
женного алгоритма нечеткой кластеризации на двух типах синтетических данных. В ходе ви-
зуального анализа результата обработки выборки с тремя кластерами, характеризующимися 
значительным перекрытием дисперсий, представленный на рис. 4, подтверждает, что, несмо-
тря на высокий уровень неопределенности в зонах перекрытия, алгоритм обеспечил четкое 
разделение кластеров, что свидетельствует о его устойчивости к шуму. Кроме того, итоговое 
разделение, отображенное на рис. 5, выборки, состоящей из пяти хорошо разделимых класте-

Рис. 2. Графики функции расстояния 
, ), ,(M pµ x y u  при фиксированном значении 

параметра p  и ( )   u uϕ =  фиксированная 
с использованием евклидова расстояния

Рис. 3. Графики функции расстояния 
, ( ), ,Mµ x y u+∞  при ( )   u uϕ =  фиксированная с 

использованием евклидова расстояния. ис-
пользованием евклидова расстояния
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ров, демонстрирует, что алгоритм точно идентифицирует все кластеры с явными границами. 
Таким образом, ключевым преимуществом алгоритма является его способность к построе-
нию адекватных границ для данных с четкой кластерной структурой, так и в более сложных 
случаях со значительным перекрытием кластеров.

Заключение

Проведённое исследование подтверждает, что использование аддитивных генераторов 
треугольных норм и конорм открывает новые возможности для повышения эффективности 
кластеризации в условиях нечёткости. Предложенные методы позволяют достичь качествен-
ного разбиения данных даже при размытых границах между кластерами, что демонстрирует 
их значительный практический потенциал. Результаты работы создают основу для дальней-
ших исследований в области нечёткого анализа данных. Перспективными направлениями яв-
ляются применение этих методов для работы с реальными данными, а также их адаптация для 
более сложных задач.
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Рис. 4. Результат кластеризации данных, 
состоящих из выборки по 7000 элементов, 

3 кластеров с перекрывающейся дисперсией

Рис. 5. Результат кластеризации данных, 
состоящих из выборки по 750 элементов, 

5 кластеров с неперекрывающейся дисперсией
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ШИФРОВАНИЕ ПО ТИПУ «ТЕКСТ В ТЕКСТЕ»
С ИСПОЛЬЗОВАНИЕМ СПИРАЛЬНО ГЕНЕРИРУЕМЫХ ПЕРЕСТАНОВОК

Северный (Арктический) федеральный университет имени М. В. Ломоносова

И. Н. Попов

Аннотация. Под шифрованием по типу «текст в тексте» понимается скрытие сообщения 
внутри некоторого текста. При шифровании по исходному сообщению строится текст, 
содержащий это сообщение, при дешифровании — по тексту определяется сообщение. 
Один из подходов реализации такого шифра основывается на использовании части пе-
рестановки: буквы текста, номера которых совпадают с числами из выбранной части пе-
рестановки, совпадают с буквами сообщения. В работе рассматриваются алгоритмы для 
спиральной генерации перестановок и шифрования по типу «текст в тексте» с указанием 
необходимой секретной информации — ключей.
Ключевые слова: алгоритм, криптография, шифрование, дешифрование, ключ, шифро-
вание по типу «текст в тексте», текст, перестановки, генерация перестановок, программи-
рование.

Введение

Перестановка — один из объектов математики [1, 2], который используется в криптографии 
как науки о способах шифрования, и представляет собой биективное отображение начального 
отрезка натурального ряда на себя. Перестановки используются в разных вариациях. Классиче-
ским примером использования перестановок в криптографии является шифр, который и назы-
вается перестановочным шифром: буквы исходного текста переставляются согласно выбранной 
перестановке, и тем самым, например, слово «информация» с помощью перестановки 9, 8, 3, 5, 4, 
6, 7, 1, 2, 10 шифруется словом «цифромания». С помощью перестановки можно в определённый 
текст «вписать» нужный секретный текст — сообщение. Такой способ скрытия сообщения назы-
вается шифрованием по типу «текст в тексте». При любом способе шифрования используются 
ключи. Под ключами понимается информация (чаще всего, секретная), которая используется 
при шифровании и дешифровании; с одной стороны, не знание ключей приводит к неправиль-
ному результату шифрования и, с другой стороны, затрудняет процесс дешифрования. Исход-
ными данными для рассматриваемого в работе способе шифрования по типу «текст в тексте» 
являются само сообщение, длина искомого текста и перестановка с некоторой информацией о 
ней. Результатом шифрования является текст, содержащий в себе сообщение. Раз речь идёт о 
текстах, то в первую очередь нужно определить алфавит, с порядком расположением в нём букв 
и их количеством; под текстом понимается конечный набор букв алфавита, его длина — это 
количество букв, из которых он состоит. При шифровании по типу «текст в тексте» буквы сооб-
щения располагают в тексте не по порядку, а, наоборот, стремятся расположить их в хаотичном 
порядке. В большинстве случаем при шифровании искомый текст будет генерироваться случай-
ным образом как набор случайно выбираемых букв алфавита (в этом случае говорят о бессмыс-
ленном тексте); при дешифровании текст может быть, наоборот, выбран смысловой.

Алгоритмы шифрования и дешифрования по типу «текст в тексте», рассматриваемые в ра-
боте, строятся с использованием перестановки. Учитывая то, что генерируемые тексты могут 
иметь большую длину, вопрос о передаче перестановки тем, кому предназначено сообщение, 
становится весьма непростым. Поэтому продвигается идея о том, чтобы не передавать «тем, 
кому нужно» всю перестановку в целом, а уметь «ими» её сгенерировать по некоторому алго-
ритму, исходя из переданных (или имеющихся) данных.
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В работе предлагаются два алгоритма: один из них касается генерации перестановки, вто-
рой — использования перестановки для шифрования и дешифрования сообщения по типу 
«текст в тексте».

1. Теоретические аспекты

Алгоритм спиральной генерации перестановки
Алгоритм генерации перестановки следующий. Исходные данные: начальный отрезок 

натурального ряда и окружность с отмеченными точками, количество которых не превыша-
ет количеству чисел в выбранном отрезке. Около точек окружности по спирали по часовой 
стрелке расставляются числа из отрезка, беря их один за другим и начиная с 1, и тем самым 
у некоторых точек появляются списки чисел, упорядоченные по возрастанию. Выбирается 
число, называемое стартовым, которое считается первым числом перестановки. Определяет-
ся правило перехода от одного числа к другому на окружности: стартовое число удаляется с 
окружности и, если стартовое число чётное, то по часовой стрелке на окружности отсчитыва-
ются точки, количество которых равно стартовому числу, иначе отчёт ведётся против часовой 
стрелки. Полученное число объявляется новым стартовым числом и вторым числом генериру-
емой перестановки. Аналогичным образом продолжается построение искомой перестановки. 
Отметим, что стартовым числом из списка назначается самое меньшее в нём. По ходу выбора 
нового стартового числа некоторые списки становятся пустыми, и они удаляются с окружно-
сти вместе с точками.

Данный алгоритм называется спиральной генерацией перестановки. Прилагательное 
«спиральное» подчёркивает, что отрезок чисел, сопоставляемых точкам, «накручивается» по 
спирали на окружность в несколько рядов; если количество точек на окружности совпадает с 
числом выбираемых чисел, то спирального накручивания не происходит и каждой точке сопо-
ставляется только одно число, включённое в список.

Пример. На окружности отмечены 7 точек и начальный отрезок содержит первые 12 нату-
ральных чисел. Тогда списки чисел, расставленные у точек на окружности, имеют вид: 

[1; 8], [2; 9], [3; 10], [4; 11], [5; 12], [6], [7],
считаем, что списки расположены на окружности по часовой стрелке и после списка [7] 

идёт список [1; 8]; такой вид назовём строчной записью списков. Список, в котором содержит-
ся стартовое число, будем называть стартовым. Если стартовое число является нечётным, то 
отсчитывает справа налево нужное количество списков, начиная со списка, идущего сразу же 
за стартовым; если же стартовое число равно чётному числу, то отсчёт списков ведётся слева 
направо. Например, если стартовое число равно 9, то из стартового списка [2; 9] удаляется это 
само число и отсчитывается 9 списков справа налево, начиная со списка [1; 8]:

[1; 8] [2] [3; 10] [4; 11] [5; 12] [6] [7]
← 1; 8 ← 7 ← 6 ← 5 ← 4 ← 3 ← 2; 9

Направление выбора списков и их отсчёт

В итоге попадаем в список [7]. Новое стартовое число равно 7. Так как в списке находится одно 
это число, то с удалением этого числа удаляется и весь список. Учитывая нечётность числа 7, 
отсчёт ведётся снова справа налево, начиная со списка [6]:

[1; 8] [2] [3; 10] [4; 11] [5; 12] [6]
← 6 ← 5 ← 4 ← 3 ← 2 ← 1; 7

Направление выбора списков и их отсчёт
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Обратим внимание, что один и тот же список может быть первым и последним в отсчёте (в 
данном случае отсчёт начали со списка [6] и на нём же закончили). Новым стартовым числом 
объявляется число 6. При этом получаем первые три числа перестановки: 9, 7, 6.

При первом стартовым числе 9 процесс генерации перестановки выглядит следующим об-
разом:

[1; 8], [2; 9], [3; 10], [4; 11], [5; 12], [6], [7] 9
[1; 8], [2], [3; 10], [4; 11], [5; 12], [6], [7] 9, 7

[1; 8], [2], [3; 10], [4; 11], [5; 12], [6] 9, 7, 6
[1; 8], [2], [3; 10], [4; 11], [5; 12] 9, 7, 6, 1

[8], [2], [3; 10], [4; 11], [5; 12] 9, 7, 6, 1, 5
[8], [2], [3; 10], [4; 11], [12] 9, 7, 6, 1, 5, 12

[8], [2], [3; 10], [4; 11] 9, 7, 6, 1, 5, 12, 4
[8], [2], [3; 10], [11] 9, 7, 6, 1, 5, 12, 4, 11

[8], [2], [3; 10] 9, 7, 6, 1, 5, 12, 4, 11, 2
[8], [3; 10] 9, 7, 6, 1, 5, 12, 4, 11, 2, 8

[3; 10] 9, 7, 6, 1, 5, 12, 4, 11, 2, 8, 3
[10] 9, 7, 6, 1, 5, 12, 4, 11, 2, 8, 3, 10

Итак, спирально сгенерирована перестановка: 9, 7, 6, 1, 5, 12, 4, 11, 2, 8, 3, 10. ■
Отметим, что правило перехода от списка к списку может быть изменено. Например, мож-

но совершать движения на окружности от точки к точке (от списка к списку) только в одном 
направлении, скажем, по часовой стрелке (или для строчной записи списков слева направо); 
число отсчитываемых точек (списков) на окружности может вычисляться по определённой 
формуле (в качестве формулы можно выбрать функцию Эйлера, значение которой от нату-
рального числа равно количеству натуральных чисел, не превосходящих данного и взаимно 
простых с ним, тогда в этом случае получили бы перестановку 9, 3, 1, 7, 8, 5, 6, 10, 4, 2, 11, 12).

Алгоритмы шифрования и дешифрования сообщения по типу «текст в тексте»
Алгоритм использования перестановки при способе шифрования по типу «текст в тек-

сте» следующий. По сообщению нужно построить текст, в котором оно содержится. В скобках 
будем делать пометки о ключах. Вначале определяется алфавит как набор букв, из которых 
строятся тексты и сообщения (сам алфавит с расположением букв и их количеством является 
ключом). Заранее определяется длина искомого текста (ключ). Генерируется или выбирается 
перестановка (ключ), длина которой равна длине искомого текста. Выбирается часть переста-
новки, длина которой равна длине сообщения (здесь ключами являются начало выбираемой 
части и длина сообщения). Искомый текст строится в три приёма: сначала составляется за-
готовка будущего текста, состоящая из одного и того же символа, не входящего в алфавит; 
затем символы в заготовке с номерами из выбранной части перестановки заменяются буквами 
сообщения, беря их одну за другой; после этого оставшиеся символы заготовки (случайным 
образом) заполняются буквами алфавита. В результате получается текст, содержащий в себе 
сообщение.

Для дешифрования сообщения по данному тексту нужно знать: алфавит; перестановку; 
длину сообщения; начальная позиция выбираемой части перестановки.

2. Практическая реализация

Продемонстрируем использование алгоритмов шифрования и дешифрования по типу 
«текст в тексте» с применением спирально сгенерированной перестановки.
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Пример. Алфавит (_ — пробел): абвгдеёжзийклмнопрстуфхцчшщьыъэюя_
Сообщение: буква; длина сообщения — 5; длина искомого текста — 12; перестановка дли-

ны 12: [9, 7, 6, 1, 5, 12, 4, 11, 2, 8, 3, 10]. В перестановке выбирается часть длины 5: [6, 1, 5, 12, 4]. 
Составляется заготовка будущего текста (буквам сообщения «буква», беря их слева направо, 
в заготовке присвоены номера, согласно числам из выбранной части перестановки: буква «б» 
записана на 6-м месте в заготовке, буква «у» — на 1-м месте и так далее):

6 1 5 12 4
→

1 2 3 4 5 6 7 8 9 10 11 12
б у к в а у * * а к б * * * * * в

Случайным образом подбираются буквы на вакантные места в заготовке, отмеченные в 
ней символом «*». В итоге получается искомый текст: «урцакблыозцв».

Если даже знать, что в сообщении 5 букв и оно имеет смысл (а не в противовес — простой 
набор букв), то из букв предложенного текста можно составить 226 слов с 5-ю буквами, часто 
встречаемые в речи или редкие и специфические; среди них: образ, выбор, крыло, буква, за-
бор, рукав, бокал, кузов, рыбак, злоба, рубка, рыбка, обрыв, рывок, арбуз, лавры, булка, обвал, 
колба, кварц, кобра, бурка, вокал, зубок, вобла, обуза, блуза, зарок, лубок, балык, браво, крабы, 
узоры. Всего из букв текста «урцакблыозцв» можно составить 832 смысловых слова, содержа-
щих от 2 («ау») до 8 букв («зубровка»). ■

Пример. Алфавит (_ — пробел): абвгдеёжзийклмнопрстуфхцчшщьыъэюя_
Текст длины 10: неосязаемо; длина искомого сообщения: 3. 
Спиральная генерация перестановки [5, 6, 2, 4, 10, 1, 3, 9, 8, 7] длины 10 со стартовым чис-

лом 5 с 6-ю точками на окружности (или, что то же самое, с 6-ю списками):
[1; 7], [2; 8], [3; 9], [4; 10], [5], [6]
[1; 7], [2; 8], [3; 9], [4; 10], [6]
[1; 7], [2; 8], [3; 9], [4; 10]
[1; 7], [8], [3; 9], [4; 10]
[1; 7], [8], [3; 9], [10]
[1; 7], [8], [3; 9]
[7], [8], [3; 9]
[7], [8], [9]
[7], [8]
[7]
Выбираемая часть с позиции 4: [4, 10, 1] (так как длина искомого сообщения известна, то 

указываем только позицию, с которой начинается выбираемая часть перестановки).
По известным данных (текст, длина сообщения, информация о генерации перестановки, 

позиция выбора чисел из перестановки) можно дешифровать искомое сообщение:

1 2 3 4 5 6 7 8 9 10
→

4 10 1
н е о с я з а е м о с о н

Отбираем буквы с номерами 4, 10, 1. Искомое сообщение: сон. 
Количество слов со смыслом длины 3, составляемые из букв слова «неосязаемо», равно 104. 

Среди них: она, сам, оно, сон, нос, яма, зам, ася, оса, сом, аня, яна. ■
Вообще говоря, сообщение может быть бессмысленным или быть сокращением слов (напри-

мер, сен — сентябрь, ноя — ноябрь) или аббревиатурой (например, гто, азс и оон). У бессмыс-
ленных сообщений есть и психологическая значимость: по большей мере из текста пытаются 
выцепить сообщения именно со смыслом, а бессмысленные откидываются как не возможные. 
Важно также отметить относительность в криптографии понятия «бессмысленность»: то, что 
для одних бессмысленно, для других может иметь большую смысловую нагрузку.
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Заключение

Предложенные алгоритмы спиральной генерации перестановки и шифрования и дешиф-
рования по типу «текст в тексте» могут быть реализованы в виде компьютерных программ, 
например, с использованием Python [3]. Перестановки в разных вариациях используются при 
шифровании [4, 5]. Отличительной особенностью предлагаемого использования перестано-
вок при шифровании является то, что берётся не вся перестановка, а только часть, что и по-
зволяет включать сообщения в текст или, наоборот, определить сообщение по тексту при де-
шифровании.
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Аннотация. В статье рассматривается актуальная задача классификации беспилотных 
летательных аппаратов (БПЛА) по их радиоизлучению с использованием методов предик-
тивной аналитики. Предложен подход, сочетающий высокую точность классификации с 
возможностью последующей реализации на программируемых логических интегральных 
схемах (ПЛИС). Разработана архитектура системы управления данными, ориентирован-
ная на обработку сигналов в режиме, близком к реальному времени. Проведено сравне-
ние различных моделей, включая сверточные и рекуррентные нейронные сети, а также 
ансамблевый метод. Показано, что наилучшие результаты достигаются при использова-
нии ансамблирования. Особое внимание уделено анализу зависимости качества класси-
фикации от уровня отношения сигнал-шум.
Ключевые слова: беспилотные летательные аппараты (БПЛА), классификация радиосиг-
налов, предиктивная аналитика, система управления данными, машинное обучение, ан-
самбли моделей, обработка сигналов в реальном времени, большие данные, Apache Spark, 
Apache Kafka, отношение сигнал-шум (SNR), радиоэлектронное противодействие, про-
граммируемые логические интегральные схемы (ПЛИС), I/Q сигналы, спектрограммы.

Введение

Широкое распространение беспилотных летательных аппаратов (БПЛА) в военной и граж-
данской сферах обуславливает актуальность задач их обнаружения, идентификации и ней-
трализации [1]. Одним из перспективных направлений является перехват управления БПЛА, 
который требует точного определения модели аппарата и используемых протоколов связи по 
его радиоизлучению [2]. Традиционные методы противодействия, такие как радиоэлектрон-
ное подавление или физическое воздействие, зачастую приводят к уничтожению цели, что не 
позволяет решить задачу ее захвата для последующего изучения.

Создание интеллектуальных систем, способных в реальном времени собирать данные, 
анализировать радиоэфир и классифицировать цели, требует применения современных мето-
дов машинного обучения и проектирования систем управления данными. Особую сложность 
представляет развертывание таких систем на аппаратных платформах с ограниченными вы-
числительными ресурсами и энергопотреблением, что характерно для полевых условий. 

В данной работе предлагается подход к построению системы классификации БПЛА, соче-
тающий высокую точность с учетом требований к последующей реализации на программиру-
емых логических интегральных схемах (ПЛИС).

1. Обзор

Обработка сигналов БПЛА сопряжена с работой в условиях больших объемов данных, вы-
сокой частоты дискретизации и жестких временных ограничений, обусловленных необходи-
мостью принятия решений в реальном времени. Это предъявляет особые требования к вы-
числительным архитектурам систем радиоэлектронного противодействия. ПЛИС являются 
предпочтительной платформой для развертывания подобных алгоритмов благодаря их способ-
ности к параллельным вычислениям, низкому энергопотреблению и детерминированности.
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Данное обстоятельство влечет за собой необходимость разработки и использования оп-
тимизированных, легковесных архитектур вычислительных моделей, ориентированных на 
эффективную аппаратную реализацию. Это включает в себя минимизацию количества обуча-
емых параметров модели, использование операций, эффективно реализуемых на ПЛИС (та-
ких как свертки), и отказ от ресурсоемких вычислений. Таким образом, задача классификации 
БПЛА рассматривается не только с точки зрения достижения максимальной точности, но и с 
учетом ограничений целевой аппаратной платформы.

Важнейшим этапами при разработке подобных систем является моделирование и оценка 
проектируемых систем. Для решения данных задач перспективным представляется создание 
системы управления данными с использованием инструментария big data.

1. Проектирование системы управления данными

Рассмотрим существующие решения. На практике в процессе цифровой обработки сигна-
лов можно выделить несколько ключевых этапов:

• Прием данных с АЦП. АЦП преобразует непрерывный аналоговый сигнал в дискретные 
цифровые отсчеты. В процессе сигнал дискретизируется, квантуется и кодируется;

• Преобразование данных. После получения цифровых данных выполняется их обработка 
с помощью алгоритмов ЦОС. К основным сценариям относят фильтрацию, модуляцию, демо-
дуляцию, спектральный анализ (быстрое преобразование Фурье) и обнаружение и распозна-
вание сигналов;

• Передача данных. После обработки цифровые данные могут передаваться в другие систе-
мы или сохраняться;

Рассмотрим пример модели такой системы в нотации IDEF0 (рис. 1) и ее декомпозицию 
(рис. 2).

Рис. 1. Контекстная диаграмма типовой системы обработки радиосигналов
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Отметим, что в качестве исполнителя в данном случае выступает ПЛИС.

Стоит упомянуть, что в настоящее время активно развиваются программно-аппаратные 
комплексы решающие похожие задачи [3]. 

Рассмотрим архитектуру системы, реализующей минимально жизнеспособный прототип 
(MVP) конвейера по захвату, передаче, хранению и управлению радиосигналом в режиме, 
приближенном к реальному времени. Архитектура построена с акцентом на асинхронность, 
отказоустойчивость и масштабируемость, а также с использованием исключительно open-
source решений.

Предлагаемый конвейер решает аналогичные задачи, однако в отличие от существующих 
решений в конвейере другие механизмы, а именно: 

• Flume. Обеспечивает процесс приема данных с АЦП, собирает файлы, генерируемые 
АЦП для дальнейшей передачи в Kafka;

• Kafka. Принимает данные из топика flume и передает их в spark на обработку;
• Spark. Обеспечивает преобразование и передачу данных;
С учётом требований к высокой пропускной способности, отказоустойчивости и возмож-

ности масштабирования, в рамках данной работы была спроектирована архитектура конвейе-
ра обработки радиосигналов, ориентированная на обработку в режиме, близком к реальному 
времени. Модель архитектуры представлена на (рис. 3.)

Данная архитектура обладает рядом преимуществ:
• Горизонтальное масштабирование: все компоненты могут масштабироваться независимо;
• Отказоустойчивость: при сбое одного узла Kafka — данные не теряются;
• Асинхронность: захват, передача и сохранение радиосигналов работают независимо друг 

от друга;
• Open-source: все инструменты доступны бесплатно, без лицензирования;
• Гибкость: можно подключить аналитику или AI- модули для событийной фильтрации;

Рис. 2. Диаграмма декомпозиции типовой системы обработки радиосигналов
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Одной из основных частей подобной системы является предиктивная система, позволяю-
щая в реальном времени генерировать предсказания для повышения качества работы. Рассмо-
трим процесс создания данной системы.

2. Предобработка

2.1. Обзор данных

В работе использовался общедоступный набор данных, предназначенный для разработ-
ки методов обнаружения и классификации сигналов БПЛА [4]. Набор содержит немодальные 
сигналы шести моделей БПЛА (DJI, FutabaT14, FutabaT7, Graupner, Taranis, Turnigy) и отдель-
ный класс шума. Каждый сигнал представлен вектором синфазной (I) и квадратурной (Q) 
компонент длиной 16384 отсчета, что соответствует приблизительно 1.2 мс при частоте дис-
кретизации 14 МГц.

После нормализации сигналы БПЛА были смешаны с лабораторными шумами (Bluetooth, 
Wi-Fi, усилитель) или гауссовым шумом с равной вероятностью (50/50). Класс шума был сфор-
мирован путем смешивания лабораторного и гауссова шума во всех возможных комбинациях. 
Для всех классов, включая шум, количество примеров для каждого уровня отношения сиг-
нал-шум (SNR) в диапазоне от –20 дБ до 30 дБ с шагом 2 дБ распределено равномерно, по 
3792–3800 образцов на каждый уровень SNR.

Анализ распределения данных выявил существенную несбалансированность классов. 
Наибольшее количество примеров приходится на класс 4, а наименьшее — на класс 0. (рис. 4.) 
При этом для каждого класса распределение по уровням SNR является однородным, что дела-
ет набор репрезентативным для оценки устойчивости моделей к шуму.

2.1. Предобработка данных

Исходный набор данных был разделен на обучающую и тестовую выборки в соотношении 
80/20. Разбиение осуществлялось стратифицированно, с сохранением распределения приме-
ров по классам и уровням SNR в обеих выборках, что обеспечило репрезентативность оценки 
моделей.

Для устранения дисбаланса классов, выявленного на этапе анализа данных, к обучаю-
щей выборке применена аугментация методом циклического временного сдвига (cyclic time 
shifting). Для каждого исходного сигнала генерировалось несколько его циклически сдвину-
тых копий. Это позволило искусственно увеличить количество примеров в миноритарных 
классах без искажения фундаментальных статистических свойств сигналов.

Рис. 3. Архитектура конвейера
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Все данные прошли Z-score нормализацию. Для I/Q-сигналов нормализация проводилась 
по каждому каналу независимо. Спектрограммы также нормализовались.

3. Обучение моделей

3.1. CNN

Для классификации по спектрограммам использовалась сверточная нейронная сеть (CNN). 
Спектрограммы подавались на вход сети в виде одноканальных изображений. В ходе экспе-
римента модель показала значение F1-меры, равное 0.66, что указывает на умеренную эффек-
тивность спектрограмм как единственного источника информации для данной задачи. График 
обучения представлен на (рис. 5.)

3.2. RNN

Для обработки временных последовательностей I/Q-отсчетов использовалась гибрид-
ная архитектура, сочетающая сверточную и рекуррентную нейронные сети. На первом этапе 
одномерные сверточные слои применялись к исходному сигналу для выделения локальных 
временных признаков низкого уровня. Полученная последовательность карт признаков по-
давалась на вход рекуррентного слоя с GRU-ячейками, которые способны улавливать долго-
срочные временные зависимости в сигнале. Выход последней GRU-ячейки использовался для 

Рис. 4. Дисбаланс классов

Рис. 5. Функция потерь и точность при обучении CNN
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классификации. Данная модель продемонстрировала наивысшее качество среди отдельных 
алгоритмов, достигнув F1-меры 0.96, что подтверждает высокую информативность исходной 
I/Q-последовательности. График обучения представлен на (рис. 6.)

3.3. LGBM

Параллельно с глубинным обучением был применен алгоритм градиентного бустинга 
LightGBM, обученный на 23 предварительно извлеченных признаках. Комплекс признаков 
включал:

• Кумулянты высоких порядков (C20, C21, C40, C41, C42, C60) [5];
• Статистики огибающей (среднее значение, стандартное отклонение, асимметрия, эксцесс);
• Фазовые признаки (стандартное отклонение фазы, стандартное отклонение разности 

фаз, нелинейность фазы);
• Спектральные характеристики (центроид, разброс, отношения энергий в различных ча-

стотных диапазонах, равномерность, Crest-фактор);
• Временные признаки и оценку SNR;
Модель LightGBM показала F1-меру 0.45. Столь низкий результат по сравнению с нейросе-

тевыми подходами указывает на то, что извлеченные признаки в совокупности несут менее ин-
формативную нагрузку для разделения классов, чем исходные сигналы или их спектрограммы.

3.4. Ансамбль

Для получения финального прогноза использовано ансамблирование предсказаний трех 
описанных выше моделей. Выходные вероятности каждой из моделей конкатенировались в 
единый вектор признаков. Этот вектор подавался на вход финального мета-классификато-
ра — многослойного перцептрона с одним скрытым слоем. Такой подход позволяет модели 
научиться взвешивать предсказания базовых алгоритмов, учитывая их сильные и слабые сто-
роны на разных типах сигналов. Итоговая F1-мера ансамбля составила 0.98, что на 2 % превы-
шает результат базовой рекуррентной модели и демонстрирует эффективность комбинирова-
ния разнородных источников информации.

3.5. Анализ зависимости качества от уровня SNR

Проведен анализ изменения F1-меры итоговой ансамблевой модели в зависимости от 
уровня отношения сигнал-шум (SNR) на тестовой выборке. Результаты, представленные на 
рис. 7, показывают, что при низких уровнях SNR (от –20 дБ до –6 дБ) качество классифика-

Рис. 6. Функция потерь и точность при обучении RNN
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ции находится на уровне, близком к случайному угадыванию (F1 ≈ 0.10). Существенный рост 
метрики начинается с уровня –4 дБ. Начиная с SNR = 8 дБ, наблюдается резкое улучшение 
качества (F1 > 0.80), а при SNR ≥ 14 дБ модель выходит на плато с F1-мерой выше 0.98. Данная 
зависимость подтверждает ожидаемое поведение: надежная классификация возможна лишь 
при достаточном соотношении сигнал-шум. (рис. 7.)

Заключение

В ходе работы предложен и исследован подход к классификации БПЛА по радиоизлуче-
нию, сочетающий современные методы машинного обучения и требования к аппаратной 
реализации на ПЛИС. На основе данного подхода создана предиктивная система, обеспечи-
вающая классификацию типа БПЛА в режиме, близком к реальному времени. Разработана от-
казоустойчивая и масштабируемая архитектура системы управления данными, которая легла 
в основу этой системы. Экспериментально подтверждено, что наивысшее качество классифи-
кации достигается при использовании ансамблевой модели, демонстрирующей F1-меру 0.98. 
Анализ зависимости качества от уровня SNR показал, что надежная классификация возможна 
при SNR ≥ 8 дБ. Полученные результаты, включая работоспособный прототип предиктивной 
системы, могут быть использованы для создания интеллектуальных систем радиоэлектронно-
го противодействия БПЛА.
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ФУНКЦИОНАЛЬНО-КОГНИТИВНОЕ МОДЕЛИРОВАНИЕ КАК ИНСТРУМЕНТ 
СИСТЕМНОГО АНАЛИЗА БИЗНЕС-ПРОЦЕССОВ АГРОХОЛДИНГОВ

Воронежский государственный университет

А. А. Репина

Аннотация. В статье рассматривается вопрос интеграции IDEF0-моделирования, ког-
нитивных карт и машинного обучения для оценки бизнес-процессов в агрохолдингах. 
На примере ЭкoНивы определены ключевые элементы бизнеса и принципы построения 
когнитивных карт. Описаны возможности применения алгоритмов обучения, таких как 
алгоритм Xeббa, генетические алгоритмы и дифференциальная эволюция, для настройки 
параметров карт. Предложены теоретические и методологические принципы многосту-
пенчатого подхода, от декомпозиции функциональных моделей до анализа сценариев. 
Статья является основой для будущих исследований в сфере формализации бизнес-про-
цессов и разработки инструментов анализа организационных систем.
Ключевые слова: функциональное моделирование, IDEF0, когнитивные карты, нечеткие 
когнитивные карты, машинное обучение, алгоритм Xeббa, обратное распространение 
ошибки, генетические алгоритмы, дифференциальная эволюция, управление бизнес-про-
цессами, системный анализ, агрохолдинг, интеллектуальные системы.

Введение

В наше время большие агропромышленные холдинги — это сложные организации со мно-
жеством уровней, поэтому важно регулярно анализировать и описывать их бизнес-процессы. 
Методология функционального моделирования IDEF0, вместе с когнитивным моделированием 
и машинным обучением, даёт теоретические и практические инструменты, чтобы понять, как 
устроены и как меняются такие системы. Этот подход помогает зафиксировать знания о связях 
между частями организации и находить общие черты в управлении трудными процессами.

Группа компаний «ЭкoНивa» — хороший пример того, как можно применить этот подход. 
Холдинг включает в себя предприятия молочного животноводства, растениеводства, перера-
ботки сельхозпродукции и семеноводства, расположенные в разных регионах. Из-за этого не-
обходимо упорядочить и описать управление.

В этой статье мы рассмотрим теоретические и практические подходы к созданию функ-
циональных моделей, когнитивных карт и их обучению с помощью машинного обучения на 
примере агрохолдинга. Также мы определим, что ещё можно подробно изучить в этой области.

1. Функциональное моделирование: фундамент системного анализа

1.1. Методология IDEF0 как инструмент структуризации

IDEF0 (Intеgrаtеd Dеfinitiоn fоr Funсtiоn Mоdеling) — это метод и нотация для создания 
моделей, описывающих бизнес-процессы. В IDEF0 особое внимание уделяется связям между 
элементами и логике операций, что полезно при анализе сложных организаций, например, 
агрохолдингов.

В основе IDEF0 лежит идея представления системы как набора взаимодействующих функци-
ональных блоков, отражающих процессы и действия. Каждый блок имеет четыре типа связей: 
вход, управление, выход и механизм. В отличие от DFD и WFD, в IDEF0 обязательно указыва-
ются управляющие воздействия, что позволяет учитывать влияние правил и норм на процессы.
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1.2. Анализ функциональной модели первого уровня «ЭкoНивы»

Функциональная модель первого уровня агрохолдинга «ЭкoНивa» показывает стандарт-
ное разделение системы управления на главные бизнес-направления. (рис. 1).

Представлена контекстная диаграмма верхнего уровня (А0 «Управление агрохолдингом 
«ЭкoНивa») и пять главных функциональных блоков:

• А1 — Управление снабжением и запасами: отвечает за поставки сырья, материалов и 
oбoрудoвaния и создание нужных запасов. Дaнные о поставках ресурсов поступают на вход, 
управление происходит на основе законов и нормативов, на выходе формируются показатели 
запасов и закупок.

• А2 — Основное производство: главный блок, включающий молочное животноводство, 
растениеводство и переработку. Управление происходит на основе стандартов качества и тех-
нологических правил, на выходе — производственные показатели и объемы сырой продукции.

• А3 — Управление продажами и маркетингом: обеспечивает работу с рынком, сбыт го-
товой продукции и анализ конкурентов.

Рис. 1. Декомпозиция А0
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• А4 — Финансово-административное управление: центральный блок, отвечающий за 
финансы, бухгалтерию, налоги и стратегическое управление.

• А5 — Управление качеством и развитием: блок, который следит за качеством, развитием 
и обучением сотрудников.

Уровень «Персонал, техника, IT-системы» обеспечивает все блоки нужными ресурсами, а 
верхний управляющий контур задает стратегию и требования к процессам.

1.3. Принцип декомпозиции и структурная целостность модели

В IDEF0 применяется принцип иерархического разделения сложных функций на составля-
ющие части. Каждый функциональный блок может быть детализирован на диаграмме, вклю-
чающей от трёх до шести блоков. Это позволяет соблюсти баланс между уровнем детализации 
и удобством восприятия. При разделении все входящие и исходящие интерфейсные дуги ро-
дительского блока сохраняются на диаграмме, что обеспечивает целостность модели и даёт 
возможность выделить пoдпрoцeccы для анализа.

2. Когнитивные карты: моделирование причинно-следственных связей

2.1. Переход от функциональной модели к когнитивной карте

После разработки функциональной модели следующим шагом следует создание когни-
тивной карты. Это ориентированный граф, где узлы — это концепции (факторы, показатели, 
объекты), а дуги — причинно-следственные связи между ними. Когнитивная карта помогает 
увидеть, как разные факторы влияют друг на друга, в том числе и через цепочки причин и 
следствий.

Переход от IDEF0-модели к когнитивной карте происходит через выбор основных концеп-
ций из функциональных блоков. Для агрохолдинга «ЭкoНивa» важными группами концепций 
являются: финансовые показатели (прибыль, расходы, инвестиции), параметры производства 
(объемы, качество, производительность), ресурсы (персонал, техника, земля, корма), рыноч-
ные показатели (спрос, цены, конкуренция) и управленческие параметры (эффективность 
управления, структура организации).

2.2. Нечеткие когнитивные карты (FCM)

Для лучшeгo отображения сложных систем применяют нечеткие когнитивные карты (Fuzzy 
Соgnitivе Маps — FCM). Они расширяют возможности обычных когнитивных карт благодаря 
использованию нeчeткой логики. В FCM каждaя связь мeжду концептами имеет вес ,ijω  где 

1 1.ijω− ≤ ≤
Положительный вес говорит об усилении влияния, отрицательный — об ослаблении, а 

ноль — об отсутствии прямой связи. Структура FCM oписывается матрицей весов [ ],ijω  кото-
рая полностью задает динамику системы.

Примеры причинно-следственных связей в системе управления холдингом:
• «Инвестиции в технологии» (+0.7) → «Производительность труда»
• «Производительность труда» (+0.8) → «Объем производства»
• «Объем производства» (+0.6) → «Прибыль»
• «Затраты на ресурсы» (–0.5) → «Прибыль»
• «Квалификация персонала» (+0.6) → «Качество продукции»
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3. Алгоритмы обучения когнитивных карт

3.1. Актуальность применения машинного обучения

Применение экспертных методов при построении когнитивных карт сталкивается с рядом 
ограничений, таких как субъективность оценок, сложность параметризации и недостаточная 
адаптивность. Использование алгоритмов машинного обучения позволяет автоматически на-
страивать структуру и параметры карт на основе эмпирических данных. Это, в свою очередь, 
увеличивает объективность модели и ее способность адаптироваться к меняющимся условиям.

3.2. Алгоритм Xeббa

Aлгoритм Xeббa, прeдлoжeнный в 1949 году, основан на принципе: «Нейроны, которые ак-
тивируются вместе, связываются вместе». Применительно к когнитивным картам:

	 ( 1) ( ) ( ) ( ),ij ij i jt t C t C tω ω η+ − +

где η  — коэффициент обучения. Этот алгоритм усиливает связи между одновременно актив-
ными концептами, и уменьшает их при противоположном поведении. Простота осуществле-
ния является положительным аспектом, в то время как отсутствие чётко заданной целевой 
функции выступает в качестве недостатка.

3.3. Генетические алгоритмы

Генетические алгоритмы (ГА) применяются для решения задач глобальной оптимизации, 
используя механизмы селекции, скрещивания и мутации. ГА позволяют одновременно опти-
мизировать как веса связей (параметрическая оптимизация), так и структуру карты (струк-
турная оптимизация). Основные операторы включают представление решения (кодирование 
матрицы весов), функцию приспособленности (например, точность прогноза), селекцию луч-
ших особей, скрещивание для создания потомков и мутацию для поддержания разнообразия.

3.4. Алгоритм дифференциальной эволюции (Diffеrеntiаl Evоlutiоn)

Алгоритм DE эффективен для непрерывной оптимизации, используя операторы мутации, 
скрещивания и селекции:

	 1 2 3( ),i r r rx F x xυ = + −
где F  — коэффициент дифференциации. В силу своей хорошей сходимости и устойчивости к 
локальным экстремумам, алгоритм дифференциальной эволюции (DE) представляет большой 
интерес для оптимизации весов когнитивных карт.

3.5. Алгоритм Грoccбeргa (Instаr/Оutstаr)

Нейроны инcтaр и oутcтaр Грoccбeргa рeшaют зaдaчи распознавания образов и воспроиз-
ведения паттернов. Инcтaр адаптирует входящие веса:

	 ( 1) ( ) ( ( )).i i i it t o x tω ω α ω+ − + −
Оутcтaр сoглaсoвываeт исхoдящиe вeса с целевыми значениями. Эти механизмы примени-

мы для локальной оптимизации отдельных узлов когнитивной карты.
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4. Методологические основы и направления развития

4.1. Многоэтапный методологический подход

Систематизированный подход к построению и улучшению когнитивных карт состоит из 
нескольких этапов:

1. Детальная декомпозиция функциональных моделей до третьего-четвёртого уровня 
для выделения пoдпрoцeccoв и их параметров.

2. Построение локальных когнитивных карт для каждого функционального блока с вы-
явлением причинно-следственных связей и экспертной параметризацией.

3. Объединение в единую корпоративную модель путём нахождения связей между блока-
ми и формирования полной когнитивной карты организации.

4. Параметризация и калибровка на основе исторических данных деятельности холдинга, 
используя корреляционный анализ, тесты причинности и экспертные оценки.

5. Обучение и оптимизация с помощью алгоритмов машинного обучения, которые выби-
раются в зависимости от имеющихся данных.

6. Вaлидaция и сценарный анализ для прoверки адекватности модели и прогнозирования 
последствий различных управленческих решений.

4.2. Возможные направления дальнейшего исследования

Теоретические и методологические результаты, полученные в статье, открывают следую-
щие направления для дальнейших исследований:

1. Декомпозиция и формализация бизнес-процессов. Рекомендуется построить полные 
IDEF0-модели второго и третьего уровней для всех пяти основных блоков функциональной 
мoдeли «ЭкoНивы». Особое внимание стоит уделить моделированию блока А2 «Основное 
производство», выдeлив пoдпрoцeccы молочного животноводства, растениеводства, пере-
работки и селекции. Это позволит определить внутренние взаимосвязи и составить каталог 
управляемых переменных для каждого подразделения холдинга.

2. Создание когнитивных карт. Исследование может быть продолжено созданием когни-
тивных карт для отдельных производственных блоков, учитывающих временные, технологи-
ческие и управленческие аспекты. Например, когнитивная карта молочного животноводства 
могла бы включать аспекты, касающиеся животноводческого цикла, качества кормов, ветери-
нарного управления и производственных показателей. Разработка таких моделей позволит луч-
ше понять механизмы, определяющие эффективность отдельных направлений деятельности.

3. Интеграция корпоративной когнитивной модели. Следующим шагом должно стать 
объединение локальных когнитивных карт в единую корпоративную модель с акцентом на 
межблочные связи. Это включает выявление общих факторов, влияющих на несколько блоков 
(например, квалификация персонала, уровень технической оснащённости), и установление 
иерархии причинно-следственных связей между различными уровнями организации.

4. Параметризация на основе данных. Важным этапом является разработка способов па-
раметризации когнитивных карт на основе исторических данных холдинга. Это может вклю-
чать: анализ временных рядов производственных показателей с использованием методов 
проверки причинности пo Грэнджeру, построение регрессионных моделей для оценки силы 
связей, разработку процедур проверки полученных параметров на основе экспертных оценок.

5. Сравнительный анализ алгоритмов обучения. Перспективным направлением являет-
ся сравнение различных алгоритмов обучения когнитивных карт (Xeббa, генетических алго-
ритмов, дифференциальной эволюции) с точки зрения точности, скорости сходимости, устой-
чивости к локальным минимумам и необходимого объёма данных. Такой анализ позволит 



370

выработать рекомендации по выбору подходящего алгоритма в зависимости от имеющихся 
данных и сложности когнитивной карты.

6. Развитие инструментов анализа сценариев. Дальнейшие исследования могут быть на-
правлены на разработку методов и инструментов для анализа сценариев на основе обучен-
ных когнитивных карт. Это включает: разработку методологии определения воздействий на 
управляемые аспекты, анализ распространения изменений через сеть причинно-следствен-
ных связей, определение ключевых аспектов, оказывающих наибольшее влияние на целевые 
показатели, сравнение сценариев на основе критериев.

Заключение

Представленная в статье теоретическая и методологическая основа показывает, что функ-
циональное моделирование IDEF0 в сочетании с когнитивным моделированием и машинным 
обучением служит хорошим способом систематизировать и анализировать бизнес-процессы 
в сложных организациях, например, в крупных агрохолдингах.

Изучение применимости этих методов на примере агрохолдинга «Эко-Нива» говорит о 
том, что такой подход полезен для формализации знаний о структуре и динамике организа-
ции. Рассмотренные алгоритмы oбучeния (Хебба, гeнeтичecкиe алгоритмы, дифференциаль-
ная эволюция и алгоритм Грoccбeргa) дают разные возможности для настройки параметров 
когнитивных карт в зависимости от данных и целей анализа.

Статья — база для дальнейшего изучения формализации бизнес-процессов, создания и 
обучения когнитивных моделей организаций, а также разработки методов и инструментов 
для их практического применения. Дальнейшее развитие включает подробную декомпозицию 
функциональных моделей, создание специализированных и интегрированных когнитивных 
карт, настройку на основе реальных данных, сравнение алгоритмов обучения, развитие ин-
струментов сценарного анализа.
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Аннотация. В статье рассматривается применение графовых нейронных сетей (Graph 
Neural Networks, GNN) для решения задачи раскроя рулонных материалов. Показано, что 
задача раскроя может быть представлена в виде графовой структуры, где вершины со-
ответствуют элементам раскраиваемого материала, а рёбра — отношениям совместимо-
сти или конфликтов между ними. Представлены основные архитектуры GNN, такие как 
Graph Convolutional Network и Graph Attention Network, а также предложен комбиниро-
ванный подход к применению GNN в задаче раскроя. Приведены результаты синтетиче-
ского эксперимента, демонстрирующие преимущества GNN по сравнению с традицион-
ными эвристическими методами.
Ключевые слова: графовые нейронные сети (GNN), Архитектуры GNN, Graph 
Convolutional Networks (GCN), Graph Attention Networks (GAT), задача раскроя.

Введение

Задача раскроя рулонных материалов относится к классу комбинаторных задач оптимиза-
ции и широко используется в промышленности — от упаковочного производства до текстиль-
ной и полиграфической отраслей.

Традиционные методы решения, включая линейное программирование и эвристические 
алгоритмы, часто демонстрируют ограниченную эффективность при увеличении размерно-
сти задачи и усложнении конфигураций раскроя.

В последние годы активно развиваются методы глубокого обучения, способные решать зада-
чи с высокой комбинаторной сложностью. Особое внимание привлекают графовые нейронные 
сети, которые позволяют описывать и обрабатывать данные в форме графов. Применение GNN 
к задаче раскроя открывает новые возможности для оптимизации процесса и поиска решений, 
учитывающих сложные взаимосвязи между элементами, так как в отличие от традиционных 
нейронных сетей, которые работают с данными, представленными в виде табличных или по-
следовательных структур, кроме того, графы обладают сложной нерегулярной структурой. 

Графовые нейронные сети предоставляют инструменты для распространения и агрегации 
информации между вершинами графа, что позволяет моделям обучаться на основе локаль-
ных и глобальных взаимосвязей. Это открывает широкие возможности для решения задач, где 
важны не только свойства отдельных элементов, но и их взаимосвязи. 

Цель работы — проанализировать возможность минимизации отходов материала при 
разрезании рулона на фрагменты заданных размеров с помощью графовых сверточных сетей 
(GCN) и графовых сетей с механизмом внимания (GAT).

1. Особенности графовых нейронных сетей в задаче раскроя

Графовые нейронные сети — это разновидность глубоких нейронных сетей, разработан-
ных для работы с данными, которые естественным образом описываются в виде графов. В от-
личие от традиционных архитектур, таких как полносвязные (Fully Connected Networks) или 
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сверточные сети (Convolutional Neural Networks), графовые нейронные сети способны обраба-
тывать данные произвольной структуры, где связи между элементами имеют важное значение 
для результата [1].

В контексте задачи раскроя графовое представление данных позволяет моделировать вза-
имосвязи между элементами, которые должны быть размещены на поверхности материала, 
следующим образом:

• Узлы графа могут соответствовать отдельным деталям (фрагментам раскроя), обладаю-
щим определёнными параметрами — размерами, формой, ориентацией, приоритетом произ-
водства и т. д.

• Рёбра графа описывают отношения между деталями: возможные конфликты размеще-
ния, допустимые комбинации, последовательность резов, технологические ограничения и т. п.

Благодаря такому представлению, GNN позволяют не просто анализировать отдельные 
элементы, а учитывать контекст их взаимного расположения, что особенно важно для опти-
мизации использования материала и минимизации отходов. Такое представление позволяет 
применять обучаемые модели, где GNN выполняет роль предсказателя оптимальной компо-
новки элементов. Модель может обучаться на синтетических данных, сгенерированных из ре-
альных производственных параметров таких как ширина рулона, список заказов, минималь-
ные зазоры и т. д.

Графовые нейронные сети выполняют распространение информации между связанными 
узлами, что позволяет модели «понимать» глобальную структуру задачи: например, какие эле-
менты лучше расположить рядом, какие — разнести, или как упорядочить операции резки.

Таким образом, GNN применяют мощные методы глубокого обучения к структурам дан-
ных, которые описывают объекты (детали раскроя) и их взаимосвязи (технологические и ге-
ометрические зависимости).

Для задачи раскроя могут рассматриваться все три типа прогнозов, характерных для гра-
фовых моделей:

• на уровне узла — определение оптимального положения или ориентации конкретной де-
тали;

• на уровне ребра — прогнозирование допустимости или предпочтительности совместного 
размещения двух деталей;

• на уровне графа — оценка качества всего раскроя в целом (например, коэффициента ис-
пользования материала).

Таким образом, графовые нейронные сети обеспечивают единый подход для решения ши-
рокого спектра подзадач раскроя, позволяя интегрировать геометрические, технологические 
и экономические факторы в рамках одной модели.

2. Архитектуры графовых нейронных сетей

2.1. Графовые сверточные сети 

Графовые сверточные сети — это одна из ключевых архитектур графовых нейронных се-
тей, которая адаптирует идею сверток из традиционных сверточных нейронных сетей для ра-
боты с графами. GCN были предложены для того, чтобы эффективно обрабатывать данные, 
представленные в виде графов, и использовать информацию о взаимосвязях между вершина-
ми для улучшения предсказательной способности модели [2].

В основе GCN лежит идея свертки на графе — операция, позволяющая объединять ин-
формацию от соседних вершин и обновлять представление каждой вершины на основе этих 
данных. В случае графов это аналогично тому, как в CNN каждая точка изображения (пиксель) 
обновляется на основе соседних пикселей. Однако в графах мы имеем нерегулярную структу-
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ру, где у каждой вершины разное количество соседей, и ребра могут быть ненаправленными 
или взвешенными [3].

Свертка по графу происходит через следующие шаги:
• агрегация, где каждый узел получает представления своих соседей и объединяет их в еди-

ное представление;
• нормализация, которая делит вклады соседей на степень вершины (количество её со-

седей) и помогает сбалансировать вклад каждого соседа, избежать проблемы избыточного 
усреднения.;

• линейная трансформация.
После того как агрегированная информация собрана, она преобразуется с помощью ли-

нейной трансформации. Это похоже на линейный слой в традиционной нейронной сети, где 
к данным применяется обучаемая матрица весов для того, чтобы «обучить» модель выявлять 
важные признаки. Формально это можно записать как:

	 

( 1) ( ),k k kH AH Wσ+ = 	 (1)
где kH  — матрица признаков на k-м слое, где каждая строка соответствует представлению 
(вектору признаков) каждой вершины,

kW  — обучаемая матрица весов для слоя k,
A  — нормализованная матрица смежности графа с добавлением единичной матрицы для 

учёта самой вершины (self-loop),
σ  — нелинейная функция активации, например, ReLU.
После применения линейной трансформации и нелинейной активации (например, ReLU) 

каждая вершина получает обновленное представление, которое учитывает информацию не 
только о самой вершине, но и о её соседях. Этот процесс может повторяться на нескольких 
слоях сети, чтобы захватить информацию от всё более дальних соседей.

GCN использует нормализованную матрицу смежности графа для обеспечения устойчивой 
агрегации информации. Эта нормализация обеспечивает равномерное распределение вклада 
каждой вершины в обновлённое представление и предотвращает «раздувание» представлений 
у вершин с большим количеством связей.

Одной из ключевых характеристик GCN является количество слоёв — глубина сети. В за-
даче раскроя глубина сети определяет, насколько широко каждая деталь «видит» своё окруже-
ние — какие другие элементы и технологические ограничения учитываются при формирова-
нии её признакового представления.

На практике обычно используют от 2 до 3 слоёв, так как более глубокие GCN сталкиваются 
с проблемой размывания признаков (over-smoothing) [4]. Это явление заключается в том, что 
по мере распространения информации между узлами представления всех деталей (вершин) 
становятся излишне похожими друг на друга. Таким образом, модель теряет способность раз-
личать уникальные характеристики отдельных элементов — например, размеры, форму или 
приоритет размещения — и, как следствие, хуже различает потенциально выгодные и невы-
годные конфигурации.

Таким образом, при проектировании GCN для задачи раскроя важно находить баланс 
между глубиной сети и выразительностью модели: достаточную глубину, чтобы учитывать 
контекст взаимодействия деталей, но не настолько большую, чтобы нивелировать различия 
между ними [5].

2.2. Graph Attention Networks

Graph Attention Networks — это одна из продвинутых архитектур графовых нейронных 
сетей, которая использует механизм внимания для более эффективной работы с графовыми 
данными. В отличие от Graph Convolutional Networks, где информация от всех соседей усред-



374

няется с одинаковыми весами, GAT позволяет сети обучать веса, которые отражают важность 
каждого соседа для текущей вершины. Это делает GAT более гибкими и мощными для задач, 
где значение связей между вершинами может варьироваться [6].

Вместо того чтобы одинаково учитывать всех соседей (как это делается в GCN), GAT дина-
мически обучает веса внимания для каждого ребра графа. Модель определяет, какие вершины 
(соседи) наиболее важны для данной вершины и какова их относительная значимость. Этот 
процесс осуществляется следующим образом:

• каждая вершина ν  вычисляет коэффициенты внимания uaν  для своих соседей ( );u N ν∈
• эти коэффициенты показывают, насколько важен каждый сосед u  для вершины ν  при 

обновлении её состояния. Значения коэффициентов зависят от представлений самой верши-
ны ν  и её соседа .u

Коэффициенты внимания uaν  вычисляются через механизм точечного внимания (dot-
product attention), который принимает на вход векторные представления двух вершин — целе-
вой вершины ν  и её соседа .u  Формально, коэффициенты внимания можно описать следую-
щим образом:

	 Re ( [ || ]),T
u ue Leaky LU a Wh Whν ν= 	 (2)

где hν , uh  — это входные представления (векторы признаков) вершин ν  и ,u
W  — обучаемая матрица весов, применяемая для линейной трансформации признаков,
a  — вектор, который определяет важность взаимодействия между вершинами,
||  — операция конкатенации (объединения) векторов hν  и ,uh

ReLeaky LU  — нелинейная функция активации для моделирования зависимости между 
вершинами.

Значение ueν  представляет собой ненормализованный коэффициент важности, который 
затем нормализуется с помощью softmax-функции по всем соседям вершины .ν  Softmax дела-
ет сумму всех коэффициентов внимания для соседей вершины ν  равной 1. Таким образом, 
каждый сосед вносит вклад в обновление представления вершины в соответствии с его важ-
ностью.

После вычисления коэффициентов внимания ,uaν  происходит процесс агрегации. Обнов-
лённое представление вершины ν  формируется как взвешенная сумма представлений её сосе-
дей ,u  где веса — это коэффициенты внимания:

	
( )

,i
u u

u N
h a Whν ν

ν

σ
∈

 
=  

 
∑ 	 (3)

где ihν  — обновлённое представление вершины ,ν
uaν  — коэффициент внимания для соседа ,u

W  — обучаемая матрица весов для линейной трансформации,
σ  — нелинейная функция активации, например, ReLU.
Этот процесс позволяет каждому узлу обновлять свои признаки, уделяя больше внимания 

важным соседям и игнорируя менее значимых.
В контексте задачи это означает, что модель может динамически определять, какие связи 

между деталями наиболее значимы. Например:
• если две детали часто конфликтуют при размещении (пересекаются или нарушают тех-

нологические зазоры), GAT может присвоить их связи высокий вес, чтобы сильнее учитывать 
это ограничение;

• наоборот, для деталей, которые редко взаимодействуют, вес связи будет минимальным, 
чтобы не перегружать модель лишней информацией.

Таким образом, GAT позволяет модели «внимательнее» относиться к наиболее критичным 
взаимосвязям между элементами раскроя, улучшая точность прогнозов размещения и эффек-
тивность использования материала.
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Это особенно полезно в случаях, когда структура зависимостей между деталями сложна 
и неоднородна — например, при комбинировании элементов разных форматов, толщин или 
технологических приоритетов.

3. Синтетический эксперимент

В качестве демонстрационного эксперимента был сформирован синтетический набор дан-
ных, содержащий 500 элементов различной длины, соответствующих деталям для раскроя ру-
лонного материала. Для всех элементов была задана фиксированная ширина рулона и мини-
мальные технологические зазоры между деталями.

Были протестированы две архитектуры графовых нейронных сетей: GCN и GAT, с целью 
минимизации остатка материала. Узлы графа соответствовали отдельным деталям, а рёбра от-
ражали совместимость и ограничения по размещению. Результаты эксперимента приведены 
в табл. 1.

Таблица 1
Сравнение методов по среднему проценту отходов и времени обучения

Метод Процент 
отходов

Время 
обучения Примечание

Жадный 
алгоритм

20 % – Классическая эвристика, базовый уровень использования 
материала; быстрый расчёт без обучения

GCN 18 % 1 час Стабильные результаты на синтетическом наборе; 
небольшое улучшение по сравнению с жадным алгоритмом

GAT 21 % 1,5 часа Механизм внимания позволяет выделять ключевые связи 
между деталями; эффект ограничен малым объёмом 
данных, возможны колебания результатов

На малом объёме данных (500 элементов) GCN показала стабильные и предсказуемые ре-
зультаты благодаря относительно простой архитектуре. GAT, несмотря на возможность вы-
делять более значимые связи между деталями за счёт механизма внимания, оказалась более 
чувствительной к объёму данных. В условиях ограниченного количества примеров она не 
продемонстрировала даже незначительное улучшение по сравнению с GCN, что объясняется 
сложностью обучения весов внимания [7].

Таким образом, демонстрационный эксперимент показывает, что даже на малых данных 
GCN и GAT могут быть сопоставимы с эвристикой, но значимое архитектурное преимуще-
ство GAT может проявиться только при увеличении объёма данных или усложнении взаимос-
вязей между деталями [8]. Время обучения GAT выше за счёт более сложной архитектуры и 
необходимости оптимизации весов внимания.

Заключение

Графовые нейронные сети показали себя перспективным инструментом для решения задач 
раскроя. Представление деталей и их взаимосвязей в виде графа позволяет учитывать как ин-
дивидуальные свойства элементов, так и сложные взаимодействия между ними.

В синтетическом эксперименте GCN продемонстрировала стабильные результаты на ма-
лом объёме данных, тогда как GAT, благодаря механизму внимания, способна выделять значи-
мые связи, но требует большего количества данных для проявления преимущества.

Результаты подтверждают, что GNN могут сопоставимо работать с традиционными эври-
стическими методами, а при увеличении объёма и сложности данных способны повысить эф-
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фективность использования материала. Дальнейшие исследования могут быть сосредоточены 
на гибридных моделях и адаптивном обучении для промышленных задач раскроя.

Литература

1. Tanis J. H., Giannella C., Mariano A. V. Introduction to graph neural networks: a starting point 
for machine learning engineers //arXiv preprint arXiv:2412.19419. – 2024.

2. Cui G., Wei Z., Su H. H. Rethinking the Expressiveness of GNNs: A Computational Model Per-
spective // arXiv preprint arXiv:2410.01308. – 2024.

3. Holagh N. A., Kobti Z. Survey of Graph Neural Network Methods for Dynamic Link Predic-
tion // Procedia Computer Science. – 2025. – Т. 257. – С. 436–443.

4. Du H. DenseGNN: universal and scalable deeper graph neural networks for high-performance 
property prediction in crystals and molecules //npj Computational Materials. – 2024. – Т. 10, № 1. – 
С. 292.

5. Cantürk F. Scalable Primal Heuristics Using Graph Neural Networks for Combinatorial Optimi-
zation //Journal of Artificial Intelligence Research. – 2024. – Т. 80. – С. 327-376.

6. Guo S. A Survey on GAT-like Graph Neural Networks //2020 International Conference on Com-
munications, Information System and Computer Engineering (CISCE). – IEEE, 2020. – С. 303–308.

7. Wang J. A survey on graph neural networks //EAI Endorsed Transactions on E-Learning. – 
2022. – Т. 8. – №. 3.

8. Zhou J. Graph neural networks: A review of methods and applications // AI open. – 2020. – 
Т. 1. – С. 57–81.



377

УДК 004.932.72:519.6

АЛГОРИТМЫ ГЕНЕРАЦИИ МНОЖЕСТВ ДАННЫХ НА ОСНОВЕ АКТИВНОГО 
ЭКСПЕРИМЕНТА ДЛЯ МАТЕМАТИЧЕСКОГО РЕМОДЕЛИРОВАНИЯ

Липецкий государственный технический университет

П. В. Сараев

Аннотация. Данная работа посвящена практической реализации концепции математи-
ческого ремоделирования, т. е. процесса трансформации уже имеющейся модели. По-
строение новой модели производится на основе обучающего множества данных, кото-
рое генерируется на основе известной математической модели, т. е. с помощью активного 
эксперимента. Предложены алгоритмы для генерации множества данных: метод Мон-
те-Карло; комбинаторный; на основе построения регулярной сетки; адаптивный метод, 
учитывающий степень сложности исходной функции. Вычислительные эксперименты на 
основе разработанного программного обеспечения на языке Python показали влияние 
генерируемого множества данных на результат ремоделирования, перспективными явля-
ются комбинаторный и адаптивный алгоритмы.
Ключевые слова: математическое ремоделирование, генерация множества данных, ак-
тивный эксперимент.

Введение

Математическое ремоделирование это процесс преобразования моделей одного класса (од-
ной структуры) в другой класс моделей [1]. В отличие от задачи идентификации математиче-
ских моделей изначально должна быть известна модель. Построение новой модели произво-
дится путём параметрической идентификации на основе генерации обучающего множества 
данных с использованием известной модели и дальнейшей минимизацией функции ошибки. 
Ключевым вопросом в математическом ремоделировании выступают вопрос того, какого объ-
ема и на основе какого алгоритма целесообразнее генерировать промежуточное множество 
данных. Использование известной модели означает то, что производится активный экспери-
мент. Управление ходом активного эксперимента позволяет влиять на качество ремоделирова-
ния. В данной работе целью является формализация алгоритмов генерации множеств данных 
и анализ их влияния на качество построения новой модели на основе вычислительного экспе-
римента.

1. Основы математического ремоделирования

Обозначим через f  известную математическую модель. Пусть для упрощения рассмотре-
ния : nf X R R⊂ →  — статическая модель. Обозначим через { }iM M=  множество различных 
классов моделей, тогда для модели f  класс, к которому она принадлежит, будем обозначать 
через .fM  Обозначим через g  собой модель другого, ремоделирующего, класса .gM  Это класс 
моделей, в который стоит задача преобразования модели .f  Математического ремоделирова-
ние это поиск оператора (процедуры, алгоритма) : .f gT M M→

Цель ремоделирования — снижение сложности решения исходной задачи. Для этого может 
быть введено понятие сложности модели ( ):C f  : ,C f R+→  где [0; ].R+ = +∞  В ремоделирование 
необходимо построение новой модели ,g  такой что ( ) ( ).C g C f<  Оценка сложности может учесть 
время получения выходного результата для известного входа, тогда это задача становится задачей 
суррогатного моделирования [2]. Если сложность отражает норму вектора параметров модели, то 
тогда ремоделирование может считаться развитием метода регуляризации А. Н. Тихонова [3].
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При построении новой модели необходимо быть готовым к снижению качества моделиро-
вания. Определим ошибку модели как : ,f Rε +→  которая в первом приближении может оце-
ниваться как ошибка в заданной метрике на основе генерируемого множества данных { , }.X Y

Таким образом, можем формализовать задачу математического ремоделирования в следу-
ющей форме:

	 ( ) ( ) min,
gg MC g gαε∈ + →

где 0α >  — коэффициент, задающий значимость снижения сложности и точности ремодели-
рования. В таком виде целью является достижение компромисса между повышением сниже-
нием сложности модели и снижением ее качества. Это делает интерпретацию задачи матема-
тического ремоделирования сходной с регуляризацией. Если оценка сложности может быть 
произведена после построения новой модели, то может решаться классическая задача параме-
трической идентификации путём минимизации ( ).gε

Обобщенный алгоритм математического ремоделирования представляется следующим 
образом:

1. Определение оценки сложности ( ),C g  исходя из постановки бизнес-задачи.
2. Определение границ изменения переменных [ , ]i ia b  для каждой входной переменной .ix
3. Определение класса моделей ,gM  зависящих от набора неизвестных, требующих иден-

тификации, параметров 
min max

{ [ , ]}.i i ic c c∈
4. Определение объема m  для генерации множества данных.
5. Выбор стратегии генерации данных.
6. Формирование обучающего множества { , }X Y  на основе модели f  путем проведения 

активного эксперимента.
7. Выбор метрики ( )gε  для оценки точности новой модели.
8. Параметрическая идентификация модели g  путем минимизации ( )gε  на основе множе-

ства { , }.X Y
9. Оценка сложности модели ( )C g  по сравнению с ( ).C f
10. Вывод из решения исходной задачи относительно целесообразности применения про-

цедуры ремоделирования.
Хотя большое значение играет алгоритмизация и реализация минимизации ошибки обу-

чения, это задача является общей для всех методов машинного обучения. Специфика ремоде-
лирования это формирование обучающего множества. Перейдем к описанию и анализу соот-
ветствующих алгоритмов.

2. Алгоритмы активного эксперимента для генерации множеств данных

Перед формулированием алгоритмов формирования множеств данных целесообразно 
определить объем множества .m  Это значения определяется, в первую очередь, с учетом име-
ющихся вычислительных ресурсов. С одной стороны, в машинному обучении постулируется 
подход, который заключается в том, что чем больше данных, тем лучше. Однако, на практике 
увеличение множества данных приводит к сложению вида целевой функции, и, соответствен-
но, к большим затратам на ее оптимизацию, невозможность применения ряда вычислитель-
ных процедур при решении оптимизационной задачи. С учетом того, что как правило, при 
построении моделей требуется подбор гиперпараметров, это существенно увеличивает время 
решения задачи. Объем множества m  можно рассматривать гиперпараметром процесса ремо-
делирования. Предположим заданным значение .m

Предложим следующие подходы к генерации множества данных:
1) метод Монте-Карло;
2) комбинаторный — на основе перебора вершин гиперпараллелепипеда;
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3) на основе регулярной сетки;
4) адаптивный метод, учитывающий степень сложности исходной функции f  в разных 

частях рассматриваемой области изменения функции.
Данный список и их содержание изменены по сравнению с опубликованными ранее автор-

скими результатами. Кроме того, каждый из алгоритмов отражает основную сущность, но в 
своей работе может использовать элементы других алгоритмов формирования множества то-
чек для обучающего множества. В каждом из последующих алгоритмов после формирования 
множества точек в пространстве изменения входных переменных вычисляется значение 
функции ,f  которое возвращается в качестве множества указаний учителя вместе с самим 
множеством точек.

2.1. Метод Монте-Карло

Базовый подход для генерации множества точек, который заключается в циклическом вы-
боре некоторой случайной точки из [ , ]n

i ia b  на основе равномерного закона распределения. 
Цель заключается в максимально полном охвате точками всей рассматриваемой области изме-
нения функции .f  Можно использовать законы распределения, отличные от равномерного, 
но в этом случае плотность наполнения точками пространства будет различной. Выбор закона 
распределения для генерации должен быть некоторым образом обоснован. В ремоделирова-
нии проще использовать, всё же, равномерный закон распределения. Для практического при-
менения требуется определить шаг дискретизации в пространстве входных переменных.

2.2. Комбинаторный алгоритм

Данный алгоритм основан на переборе различных комбинаций точек, начиная с гранич-
ных. По сути, этот алгоритм похож на подход решения задач планирования эксперимента. 
В классическом варианте, когда по каждой координате выбираются границы изменения пере-
менных ,ia  ib  и строится декартово произведение по всем n  координатам { , } .n

i ia b  Однако, 
такой способ малоприменим на практике, т. к. при 100n =  переменных таких комбинаций 
будет очень много — 100 302 10 .≈  При небольшом числе переменных, например, при 2,n =  бу-
дет сгенерировано всего 22 4=  точки, что очень мало. В таком случае следует использоваться 
промежуточные точки по каждой координате.

Для ремоделирования предлагается такой алгоритм:
1. Вычисление количества точек, приходящихся на одно измерение: [ ],n

im m=  где ква-
дратные скобки означают выбор целой части, отбрасывание дробной.

2. Генерация по каждой координате множества равноудаленных друг от друга im  точек, что 
может быть реализовано на Python с использованием функции linspace из пакета numpy.

3. Создание всех комбинаций точек из предыдущего пункта.
4. Определение оставшегося числа несгенерированных точек: : .im m n m= − ⋅
5. Генерация множества случайных точек на основе равномерного закона распределения в 

области [ , ]n
i ia b  методом Монте-Карло.

2.3. Алгоритм на основе регулярной сетки

Алгоритм формирования множества данных на основе регулярной сетки похож во многом 
на метод Монте-Карло. Его задача так же состоит в максимально полном покрытии области 
определения функции .f  При этом не требуется шаг дискретизации формируется автомати-
чески, исходя из числа точек, которые требуется сгенерировать. Алгоритм представляется та-
ким образом:
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1. Генерация по каждой координате множества равноудаленных друг от друга m  точек, что 

создает регулярную сетку по каждой координате с шагом ( ) .( 1)
i i

ij
b ax m
−= −

2. Случайное перемешивание (перестановка) по каждой координате i  множества точек ,ijx  
что на языке Python реализуется с использованием процедуры random.shuffle из пакета numpy.

Тем самым, в качества строчек обучающего множества будут выступать точки из числа 
регулярно созданной сетки.

2.4. Адаптивный алгоритм

Основная идея данного алгоритма состоит в генерации большего количества точек в тех 
областях пространства изменения входных переменных, в которых больше область значений 
функции f  с учетом размера этой области. Интуитивно это означает, что функция на этих 
участках сильнее возрастает или убывает, т.е. отражает идею более сложного поведения моде-
ли в этих участках. В основу разбиения исходной области на подобласти может использовать-
ся процедура бисекции брусов (многомерных параллелепипедов), которая используется в ал-
горитмах интервального анализа [4]. Бисекция это разбиение области по середине i-й 
координаты на две новых подобласти. Получаемые подобласти будут одинакового объема 
(размера). Оценка образа изменения функции может осуществляться на основе функций 
включения — достаточно простых процедур для внешнего гарантированного оценивания ди-
апазона изменения функции [4]. Однако, для упрощения может использоваться оценка на ос-
нове значений функции в нескольких сгенерированных с помощью метода Монте-Карло точек 
в каждой из подобластей. Можно предложить такой адаптивный алгоритм для создания мно-
жества данных в рекурсивной форме с учетом того, что задается еще и минимально генериру-
емое число точек в области :rm

1. Если выполняется условие ,rm m<  то генерируется в данной области rm  точек, процеду-
ра завершает работу, это множество возвращается в качестве результата.

2. Выбирается координата *,i  по которой изменение i-й входной переменной i ib a−  макси-
мально. Если таких координат несколько может выбираться первая из них или случайная.

3. Производится разбиение области на две части путём бисекции по координате *.i
4. В каждой из этих подобластей генерируется набор из 2

rm  точек (если значение rm  не-
четно, то в одной из областей генерируется на одну точку меньше, это не существенно), в ко-
торых рассчитываются значения функции .f

5. Для каждой из этих двух подобластей определяются максимальные и минимальные зна-
чения, вычисляются диапазоны изменения функции в них 1range  и 2.range

6. Рассчитывается количество точек, которое необходимо сгенерировать в каждой из этих 
подобластей пропорционально диапазонам изменения функции с учетом того, что ряд точек 
уже сгенерирован: ( )

1
1

1 2
;2

rm rangek m range range
 = − ⋅  + 

 2 1 .2
rmk m k= − −

7. Рекурсивный вызов той же самой функции для генерирования двух множеств в каждой 
из подобластей с соответствующими значениями точек 1k  и 2.k

8. Завершение работы процедуры и возврат в качестве ответа объединения четырех мно-
жеств в одно (два множества получились в ходе оценивания диапазонов функций в каждой из 
подобластей на шаге 4, а два — в ходе вызова функций на шаге 7).

3. Вычислительные эксперименты и анализ алгоритмов генерации множеств

Для проведения экспериментов было разработано программное обеспечение на языке 
Python, реализующее приведенные выше алгоритмы генерации множеств. В качестве извест-
ной модели f  была выбрана функция из [5]:
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	 ( ) ( ) ( )2, sin sin 2 ,f x y a x yπ π= ⋅ ⋅

которая рассматривалась на существенно более широком диапазоне [ 10;10] [ 10;10]− × −  в от-
личие от [ 1;1] [ 1;1]− × −  из [5]. Параметрическая идентификация новой модели содержала ком-
поненты глобального и локального поисков. Вначале производился поиск на 10000 случайных 
значениях по методу Монте-Карло, затем применялся метод мультистарта из 20 стартовых 
точек и использованием метода BFGS для локальной оптимизации. Использовалась процеду-
ра minimize из пакета scipy. Для решения задачи ремоделирования была выбрана ошибка MSE 
и 4 разных функции. В качестве ремоделирующих рассматривались 4 модели, включая струк-
туру исходной модели 1( ),z  линейную по параметрам модель 2( ),z  квадратичную модель без 
свободного члена 3( ),z  модель искусственного нейрона 4( ):z

	 ( ) ( )2
1 1 2 3sin sin ;z c c x c y⋅= ⋅ ⋅ ⋅

	 12 20 ;z c c x c y= ++

	 2 2
3 1 2 ;z c x c y= +

	 ( )2 3 44 0 1
1 .

1 c c x c yz c c
e− + +

= + ⋅
+

Каждый параметр моделей рассматривался на диапазоне [ 10;10].−  С помощью предложен-
ных методов формировалось множество данных размерами 500, 1000, 1500, 2000 и 2500 строк. 
Частично фрагмент с результатами экспериментов, где отражены лучшие по качеству резуль-
таты, приведен в табл. 1.

Таблица 1
5 лучших результатов вычислительного эксперимента

Объем данных m Алгоритм генерации 
множества Модель z Ошибка на обучающем 

множестве
1000 На основе регулярной сетки 1z 1,0722e–11

500 Комбинаторный 1z 0,01366
1000 Комбинаторный 1z 0,02312
2500 Комбинаторный 1z 0,02992
2500 Комбинаторный 4z 0,03295

Таблица 2
5 худших результатов вычислительного эксперимента

Объем данных m Алгоритм генерации 
множества Модель z Ошибка на обучающем 

множестве
1000 Монте-Карло 2z 0,06357 
1000 Монте-Карло 3z 0,06389
1500 Комбинаторный 4z 0,06870
1500 Комбинаторный 3z 0,06871
1500 Комбинаторный 2z 0,06871

Вычислительные эксперименты показали следующие результаты:
1) не при всех множествах данных были получены отличные результаты при идентифика-

ции самой модели 1,z  при этом не всегда увеличение объема множества приводило к лучшим 
результатам, что связано с важностью применения качественных методов параметрической 
идентификации;
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2) комбинаторный алгоритм генерации данных для маленького числа переменных приво-
дит к лучшим результатам, при этом худшие результаты также получены при комбинаторном 
алгоритме;

3) при больших объемах множества данных хорошие результаты показывает адаптивный 
алгоритм генерации множества, превосходит метод Монте-Карло по качеству генерируемого 
множества данных.

Заключение

Выбор объема множества данных в математическом ремоделировании вместе с выбором 
алгоритма для генерации самого множества являются важнейшими факторами для решения 
задачи. Данные параметры могут приводить к разным результатам, они могут рассматривать-
ся как гиперпараметры ремоделирования и подбираться для каждой задачи отдельно. Вычис-
лительные эксперименты показали целесообразность применения комбинаторного подхода к 
генерации множества данных для малого числа переменных, адаптивный метод имеет преи-
мущество перед методом Монте-Карло.

Исследование выполняется за счет гранта РНФ № 24-21-00474 «Разработка и исследование 
методов и автоматизированной системы ремоделирования систем машинного обучения в ана-
лизе больших данных», https://rscf.ru/project/24-21-00474.
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УДК 004.8

ПРИМЕНЕНИЕ МОДЕЛЕЙ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ДИАГНОСТИКИ 
ПНЕВМОНИИ НА ОСНОВЕ МЕДИЦИНСКИХ ИЗОБРАЖЕНИЙ

Воронежский государственный университет

Д. С. Сергеев

Аннотация. В статье исследуется задача автоматической диагностики заболеваний ор-
ганов грудной клетки по рентгеновским снимкам. В качестве исходного материала ис-
пользовался набор данных, разделённый на две категории: снимки здоровых лёгких и 
изображения с признаками пневмонии. Представлены результаты обучения, анализ точ-
ности, а также реализованный веб-интерфейс для практического применения системы. 
Тестирование показало высокую точность классификации, что открывает перспективы 
применения метода для более сложных диагностических задач.
Ключевые слова: машинное обучение, глубокое обучение, сверточные нейронные сети, 
рентгенография, пневмония, медицинские изображения, ResNet50V2, компьютерное 
зрение.

Введение

В будущем из-за быстрого развития ИИ врачи могут ставить диагнозы иначе, ведь сверточ-
ные нейронные сети стали главным инструментом для работы со сложными медицинскими 
снимками. Было бы очень удобно, если бы программа могла сама находить различные болез-
ни, например видеть проблемы с легкими или переломы костей, при этом делая это с высокой 
точностью. Это могло бы значительно снизить нагрузку на работников больниц. 

Поэтому, развитие искусственного интеллекта и компьютерного зрения дает новые воз-
можности для создания очень точных систем диагностики, но, чтобы сделать модель для на-
хождения переломов, нужно двигаться по шагам. Сначала лучше решать более простые задачи 
классификации. Это поможет отладить структуру и методы работы, при этом, нужно еще и 
сравнить разные сверточные нейронные сети, чтобы выбрать из них наилучшую. 

Как первый шаг в большом исследовании по автоматизации диагностики проблем груд-
ной клетки, было выбрана задача по нахождению пневмонии. Это потому, что есть доступные 
данные, задача бинарной классификации (пневмония есть или нет) относительно проста, и 
опыт, который будет получен, можно будет использовать для более сложной задачи, а именно 
нахождения переломов.

1. Материалы и методика исследования

В качестве базовой модели использовалась модель ResNet. Она представляет собой архи-
тектуру CNN, разработанную для снижения влияния затухающего градиента в нейронных се-
тях и повышения точности результатов [1, 2]. 

Существует несколько вариантов архитектуры ResNet, одним из которых является 
ResNet50V2. В качестве базовой модели использовалась модель ResNet50v2, предварительно 
обученная на наборе данных, подобные обученные модели используют ранее изученные при-
знаки из больших наборов данных, что может улучшить производительность и сократить вре-
мя обучения на меньших специализированных наборах данных.

EfficientNet входит в семейство сверточных нейронных сетей и спроектирована для вы-
сокоэффективной классификации изображений. Архитектура EfficientNet-B0 представлена на 
рис. 2.
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EfficientNet-B0 является базовой моделью линейки EfficientNet и продемонстрировала зна-
чительную эффективность в задачах классификации изображений, её архитектура включает 
метод масштабирования для согласованного изменения размерности и разрешения, обеспе-
чивая современный уровень производительности, также данная модель поддается дообуче-
нию для конкретных задач классификации изображений. 

Архитектура EfficientNet-B0 построена на основе компонентов мобильной инвертирован-
ной узкогорлой свертки (MBConv) с добавлением блоков сжатия и SE-блоков [3]. Такое реше-
ние эффективно максимизирует точность при минимизации количества параметров. 

В архитектуре применяется глубинно-разделимая свертка, снижающая вычислительную 
сложность в 2k  раз, где k  — размер ядра свертки. Архитектура также включает инвертиро-
ванные остаточные блоки для сокращения числа обучаемых параметров. В модели 
EfficientNet-B0 осуществляется масштабирование глубины, ширины и разрешения для кор-
ректного масштабирования модели [4]. 

2. Результаты

В исследовании был выбран набор «Chest X-Ray Images (Pneumonia)», который разделен на 
тренировочную и тестовую выборки [5]. 

В каждой из них содержатся изображения, которые разделены на две категории: снимки 
здоровых легких и снимки с признаками пневмонии. Общий объем набора составляет около 
2,5 ГБ.

График слева (рис. 3) показывает изменение точности модели в процессе обучения. Синяя 
линия на графике показывает точность на обучающей выборке, а оранжевая линия показыва-

Рис. 1. Архитектура ResNet50V2 Рис. 2. Архитектура EfficientNet-B0
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ет точность на валидационной выборке. По оси X  — эпохи обучения (от 0 до 30), по оси Y  — 
значение точности (от 88 до 96 %). 

График справа показывает изменение функции потерь. Синяя линия, это потери на обуча-
ющей выборке, а оранжевая линия, это потери на валидационной выборке. По оси X  — эпохи 
обучения (от 0 до 30), а по оси Y  — значение функции потерь (от 0.1 до 0.275)

Данные два графика демонстрируют, что модель достигла высокой точности (более 95 %) 
на валидационной выборке, также потери стабильно снижаются на протяжении обучения. 

Модель была обучена за 156 минут и 44 секунды (2 часа, 36 минут), это довольно долго, ибо 
модель обучалась на CPU. 

Самая точная валидационная точность, которая была достигнута в процессе обучения рав-
няется 93.58 %.

На графике видно, что точность растет до примерно 96 %, а валидационная до 94 %. Также 
видно, что нет переобучения, так как нет признаков взрывного роста валидационных потерь. 

Если сравнивать графики у EfficientNet-B0 и ResNet50V2, то можно сделать вывод, что 
EfficientNet-B0 показывает более стабильное и контролируемое обучение. В это же время, 
ResNet50V2 демонстрирует хорошую точность в начале, но теряет устойчивость после 8 эпохи.

На графике видно, что EfficientNet-B0 демонстрирует высокую эффективность, модель пра-
вильно классифицировала 176 случаев для метки «NORMAL», а также правильно классифи-
цировал 373 случая для метки «PNEUMONIA». Модель не идеально определяется «NORMAL», 
но в медицинском контексте лучше иметь больше ложны тревог, чем пропущенных диагнозов, 

Рис. 3. Графики точность модели и потери модели ResNet50V2

Рис. 4. Графики точность модели и потери модели EfficientNet-B0
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то есть лучше ошибиться и сказать, что пневмония есть, когда ее нет, чем сказать, что пневмо-
нии нет, когда она есть. Возможно, что проблема состоит в самом наборе данных, на которых 
обучалась модель.

Сравнивая матрицы ошибок ResNet50V2 и EfficientNet-B0, можно сделать вывод, что 
EfficientNet-B0 ошибается меньше на классе NORMAL, чем ResNet50V2. Обе модели показы-
вают хорошие результаты с обнаружением, но EfficientNet-B0 продемонстрировала более ста-
бильное и контролируемое обучение на протяжении всех эпох, она показывает плавный рост 
точности без признаков переобучения. 

Таблица 1
Результаты обучения моделей

Модель Класс Точность Полнота F1-score
EfficientNet-B0 NORMAL 0.91 0.75 0.82

PNEUMONIA 0.87 0.96 0.91
ResNet50V2 NORMAL 0.93 0.66 0.77

PNEUMONIA 0.83 0.97 0.89
Полученные результаты показывают, что модель EfficientNet-B0 демонстрирует более вы-

сокие и стабильные показатели по всем ключевым метрикам по сравнению с ResNet50V2 и 
является более предпочтительным вариантом для практического применения.

Заключение

В ходе сравнения удалось подтвердить, что современные сверточные нейронные сети, та-
кие как ResNet50V2 и EfficientNet-B0, могут демонстрировать высокую точность при решении 
задачи автоматического выявления пневмонии по рентгеновским снимкам. Важно отметить, 
что набор данных при этом содержал снимки различного качества, что значительно усложняло 
задачу, тем не менее обе архитектуры показали способность извлекать устойчивые признаки. 
Обе модели достигли результатов выше 95% на валидационных данных, однако EfficientNet-B0 
показала более стабильное поведение во время обучения и более ровный рост точности, что 
делает её предпочтительным вариантом для прикладного использования. 

Полученные результаты указывают на перспективность применения подобных архитектур 
в других медицинских системах, что в дальнейшем может использоваться для обнаружения 
более сложных патологий, а также применена в качестве удобного инструмента для медицин-
ского персонала.

Рис. 5. Матрица ошибок EfficientNet-B0 Рис. 6. Матрица ошибок ResNet50V2
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УДК 004.93

РАЗРАБОТКА ПРИЛОЖЕНИЯ ДИАГНОСТИКИ ОПУХОЛЕЙ 
НА МРТ СНИМКАХ ГОЛОВНОГО МОЗГА

Университет Иннополис

С. С. Сергеев

Аннотация. В работе рассматривается задача детекции опухолей на МРТ снимках голов-
ного мозга. Для ее решения рассмотрены методы Faster R-CNN и SIFT-CNN. Предложены 
и протестированы модификации SIFT-CNN, направленные на улучшение качества оцен-
ки в ситуациях, где обучение на дескрипторах неэффективно. В ходе исследования наи-
более подходящей для решения задачи стала модификация на основе графических HOG 
дескрипторов, которая показала сбалансированные результаты метрик mAR и mAP по 
сравнению со стандартной моделью и SIFT, SURF модификациями. На основе выбранной 
модели реализована REST API-система и предложены практические сценарии её исполь-
зования.
Ключевые слова: детекция объектов, машинное обучение, REST API, МРТ, опухоль го-
ловного мозга, мониторинг и оповещение, разработка систем.

Введение

Компьютерное зрение — область искусственного интеллекта, направленная на интерпре-
тацию визуальной информации с изображений и видеоматериалов. Продукты, использующие 
достижения области компьютерного зрения, активно внедряются во все сферы общества.

Одним из перспективных направлений является здравоохранение, где компьютерное зре-
ние применяется для диагностики заболеваний по данным КТ, МРТ, рентгенографии и виде-
озаписям [1–3]. Такой подход повышает точность диагноза и сокращает время его установле-
ния. Это, в свою очередь, позволяет выявлять заболевания на ранних стадиях и увеличивает 
вероятность благоприятного исхода, а также частично компенсирует дефицит кадров.

В данной статье рассматривается метод классификации изображений SIFT-CNN, предла-
гаются методы, основанные на схожей концепции, проведён эксперимент по задаче детекции 
опухолей на МРТ-снимках с использованием алгоритма Faster R-CNN. На базе наиболее эф-
фективного алгоритма построена система с архитектурой REST API, обеспечивающая воз-
можность переобучения модели на новых данных, а также функции мониторинга и автомати-
ческого оповещения о диагностических результатах.

1. Описание применённых моделей

В качестве модели детекции объектов выбран Faster R-CNN, состоящий из каркасной и го-
ловной частей. Каркас представлен свёрточной нейронной сетью (CNN), извлекающей карты 
признаков из изображений. Головная часть отвечает за обнаружение объектов на полученных 
картах и реализуется через три компонента:

1. Region Proposal Network выделяет регионы с предполагаемым расположением объек-
тов [4].

2. RoI pooling формирует признаки фиксированного размера из карт регионов [5].
3. Классификатор определяет классы по вычисленным признакам.
Алгоритм обеспечивает отличную точность классификации и локализации и устойчив к 

масштабированию, ротации и окклюзии. Точность, однако, существенно зависит от выбран-
ного каркаса.
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В качестве каркаса изначально планировалось использовать архитектуру SIFT-CNN [6], ос-
нованную на обучении сверточной сети на SIFT-дескрипторах [7]. При таком подходе обуче-
ние на стандартных дескрипторах невозможно, поскольку число точек интереса различается 
для каждого изображения. Поэтому автор метода [7] применил плотную реализация алгорит-
ма, в которой дескриптор вычисляется для каждой точки. Несмотря на возросшие вычисли-
тельные затраты, такая реализация совместно с ResNet-18 показала более высокие результаты 
сопоставимые с ResNet-50 [6].

В задаче детекции опухолей данный подход с ResNet-18 продемонстрировал результаты, 
примерно в два раза хуже, чем у модели, обученной на оригинальных изображениях. В связи 
с этим была предложена альтернативная схема, при которой уже ResNet-50 обучается одно-
временно на изображении и дескрипторах, формируя входной сигнал из двух каналов — од-
ноканального изображения и сжатые дескрипторы. Сжатый дескриптор представляет собой 
среднее всех элементов исходного дескриптора. Такой подход снижает локальную информа-
тивность, но при этом позволяет использовать дескриптор без потерь в качестве общей оценки.

Предложенную схему удалось применить также к альтернативным дескрипторам: SURF [8] 
и HOG [9]. Для SURF использован метод сжатия дескриптора, а для HOG — его графическое 
представление из библиотеки scikit-learn.

 
2. Компьютерный эксперимент

2.1. Описание экспериментальных данных и эксперимента

В качестве экспериментальных данных используются изображения пользователя “Python 
bots2021” с roboflow.com. В ходе исследования установлено, что снимки идентичны другим 
наборам данных, но не имеют модифицированных изображений, что позволило составить 
пользовательский набор аугментаций. Набор состоит из 3038 рисунков различного размера 
опухолей и разделены на следующие четыре класса:

1. No_tumor — Опухоль отсутствует.
2. Glioma — Глиома.
3. Meningioma — Менингиома.
4. Pituitary — Аденома гипофиза.
Эксперимент состоит из двух этапов: обучение модели и её оценка на тестовых данных. Для 

обучения использовано 3200 изображений, 1090 из которых получены с помощью дополнения 
данных, валидационная и тестовая выборки включают 600 и 328 снимков соответственно. Все 
изображения предварительно нормализованы с помощью метода оценки плотности ядра [10].

Испытание проведено с моделью ResNet-50, предобученной на наборе данных ImageNet. 
Дообучение производилось на видеокарте RX 6800 XT с 16 Гб видеопамяти с применением 
платформы ROCm при следующих параметрах обучения:

• Оптимизатор — AdamW.
• Количество эпох — 10.
• Планировщик. Основной — CousineAnnealingLR, холодный старт — LinearLR.
• Batch_size — 18.
• Learning_rate — 0.0001.
• Weight_decay — 0.0002.

2.2. Метрики

В задачах классификации с локализацией и детекции объектов для проверки правильности 
положения ограничивающей рамки используется отношение площадей ограничивающих рамок:
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где A  и B  — предсказанная и настоящая тестовые рамки [11]. При IoU  равном 0 рамки не 
пересекаются, при 1 рамки наложены идеально. Для данной задачи применены следующие 
модификаторы метрик mAP  и mAR  [11]:

1. По порогу .IoU
a. 0.5:0.05:0.95 — среднее mAP  и ,mAR  полученных на каждом значении IoU  в данном 

интервале.
b. 0.5.
c. 0.75.

2. По размеру рамки.
a. Малая — площадь меньше 2 232 .px
b. Средняя — площадь в диапазоне от 232  до 2 296 .px
c. Большая — площадь больше 2 296 .px

3. По максимуму детекций на изображение.
a. На 1.
b. На 10.

Для итоговой модели рассчитывается мульти классовая матрица ошибок.

2.3. Результаты эксперимента

Результаты эксперимента приведены в табл. 1. Анализ полученных данных показал, что 
наименее эффективным оказался алгоритм SURF, который показал снижение средней точно-
сти на 0.06. Метод HOG продемонстрировал наилучшие значения метрики mAR  и занял про-
межуточное положение по показателю mAP  между алгоритмами SIFT и базовой реализацией. 
Алгоритм SIFT обеспечил умеренное повышение общей точности и значительное улучшение 
при 0.75IoU =  для объектов среднего размера, однако привёл к снижению значений mAR  и 
mAP  для малых объектов. 

Таблица 1
Результаты испытания модификаций алгоритма

Метрика Обычный SIFT SURF HOG
mAP|0.5:0.05:0.95|все 0.424 0.456 0.380 0.447
mAP|0.5|все 0.860 0.878 0.751 0.860
mAP|0.75|все 0.372 0.450 0.325 0.398
mAP|0.5:0.05:0.95|малые 0.410 0.319 0.242 0.395
mAP|0.5:0.05:0.95|средние 0.423 0.464 0.391 0.448
mAP|0.5:0.05:0.95|большие 0.811 0.796 0.654 0.789
mAR|0.5:0.05:0.95|на 1 0.511 0.550 0.471 0.529
mAR|0.5:0.05:0.95|на 10 0.526 0.561 0.482 0.550
mAR|0.5:0.05:0.95|малые 0.513 0.430 0.348 0.566
mAR|0.5:0.05:0.95|средние 0.525 0.566 0.487 0.547
mAR|0.5:0.05:0.95|большие 0.820 0.800 0.720 0.820

В совокупности полученные результаты позволяют заключить, что модификация на основе 
дескрипторов HOG является наиболее сбалансированным решением с точки зрения компро-
мисса между точностью и устойчивостью. Матрица ошибок модификации приведена в табл. 2, 
при этом общая точность классификации составляет 92 %.
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Таблица 2
Матрица ошибок модификации HOG

Предсказанные

И
ст

ин
ны

е Класс Без опухолей Глиома Менингиома Аденома гипофиза
Без опухолей 29 7 2 0
Глиома 0 69 8 0
Менингиома 1 0 95 1
Аденома гипофиза 1 1 2 88

3. Описание разработанной системы

Приложение реализовано в виде сервиса, взаимодействие с которым осуществляется через 
REST API. Такой архитектурный подход обеспечивает возможность автономного функциони-
рования системы без непосредственного участия оператора. Например, МРТ-терминал может 
в процессе диагностики передавать снимки пациента, которые обрабатываются системой в ре-
альном времени; затем терминал получает результаты предсказаний и отображает их на экра-
не оператора либо аккумулирует серию предсказаний и связанных метрик, формируя вердикт 
по завершении обследования. Аналогично может быть организована потоковая диагностика, 
подобная процедуре флюорографии, когда пациент проходит обследование, а результаты ав-
томатически поступают врачу. Три типовых сценария работы системы представлены на рис. 1.

Компоненты программной инфраструктуры проекта развёртываются в изолированных 
Docker-контейнерах, объединённых общей сетью, обеспечивающей их взаимодействие. Управ-
ление контейнерами осуществляется с использованием файла docker-compose, позволяющий 
оперативно развернуть все элементы системы. 

Инфраструктурная схема представлена на рис. 2, на ней представлены следующие компо-
ненты:

Рис. 1. Возможные сценарии применения системы
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1. Celery — процесс фреймворка Celery, предназначенного для выполнения задач в реаль-
ном времени и фоновом режиме. Данный процесс отвечает за выполнение запланированных 
задач по обучению модели, генерации предсказаний по пакетам фотографий и за выполнение 
срочных предсказаний. 

2. Flower — админ панель и средство мониторинга за задачами в реальном времени для 
Celery.

3. Redis — брокер сообщений для Celery.
4. Postgres — контейнер объектно-ориентированной СУБД PostgreSQL, хранящей в себе 

информацию о поступивших пакетах изображений, токены аутентификации, данные фрейм-
ворка Django.

5. Web — приложение на REST API архитектуре, разработанное с помощью фреймворков 
Django и Django Rest Framework на фреймворке Django, реализующее интерфейс взаимодей-
ствия с системой.

6. Nginx — веб сервер, принимающий запросы пользователей и передающий их контейнеру 
web на обработку, может использоваться для настройки ssl сертификатов, обеспечивающих 
безопасное соединение с сервером, обслуживания статических файлов или балансирования 
нагрузки.

7. Loki — система хранения, индексирования и обработки журналов.
8. Promtail — приложение, собирающее с локального расположения журналов и передаю-

щая в Loki. Используется для сбора журналов контейнеров и Nginx.
9. Prometheus — система сбора и хранения метрик внутри базы данных временных рядов. 

Собирает метрики с приложений-экспортёров.
10. Grafana — система визуализации данных и оповещения о событиях. Используется для 

отображения журналируемых данных и собранных метрик.
11. Alertmanager — система оповещения о показателях системы. Через telepush отправляет 

информацию в telegram.
12. Telepush — telegram echo-бот, отвечающий за перенаправление сообщений системы в 

telegram чат.

Рис. 2. Инфраструктурная схема системы
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13. Telegram — мессенджер, предоставляющий API для взаимодействия с чатами и управ-
ления ботами внутри него.

14. Postgres-exporter — система сбора метрик с PosqtgreSQL.
15. Node-exporter — система сбора метрик о состоянии сервера.
16. Nginx-exporter — система сбора метрик Nginx.
17. Cadvisor — система сбора метрик docker контейнеров.
18. Amd-exporter — система сбора метрик для видеокарт AMD.

Заключение

В статье предложен метод на основе архитектуры SIFT-CNN и протестирован совместно с 
алгоритмами SIFT, SURF и HOG на задаче детекции опухолей на МРТ снимках мозга. В резуль-
таты эксперимента показали, что модели, базирующиеся на SIFT и HOG, позволяют получить 
прирост по некоторым критериям, взамен возможного ухудшения по другим. Учитывая дан-
ное свойство, метод применим как альтернатива базовым моделям. Для разработанного Web 
API выбран метод на основе HOG, с общим процентом обнаружения опухолей равным 92, 
так как предоставляет наиболее сбалансированные результаты. Разработанная система сле-
дует стандартам современной web разработки, обеспечивая возможности масштабируемости, 
журналирования и мониторинга.

В дальнейшем приложение планируется усовершенствовать за счёт внедрения альтерна-
тивных методов детекции объектов, что позволит повысить точность и скорость обработки. 
Также планируется внедрение автоматического подбора параметров обучения, что облегчит 
настройку модели. Дополнительно планируется исследовать применение метода главных ком-
понент для снижения размерности дескрипторов SIFT, что может улучшить эффективность и 
уменьшить вычислительные затраты.
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СОВРЕМЕННЫЕ МЕТОДЫ ОБРАБОТКИ ИЗОБРАЖЕНИЙ 
НА ОСНОВЕ ГИБРИДНЫХ МОДЕЛЕЙ ГЛУБОКИХ НЕЙРОННЫХ СЕТЕЙ

Воронежский государственный университет

А. А. Сирота, Р. Р. Отырба, Н. И. Бережнов

Аннотация. Рассматриваются основные проблемы, возникающие при создании и при-
менении современных архитектур глубокого обучения (CNN и ViT) в задачах обработки 
изображений. Определены направления совершенствования моделей глубокого обуче-
ния для снятия существующих ограничений. В рамках указанных направлений представ-
лены результаты исследований, содержащие новые гибридные архитектуры, которые 
эффективно сочетают преимущества свёрточных сетей и трансформеров для решения 
целого ряда критически важных задач компьютерного зрения, таких как: классифика-
ция, семантическая сегментация, обнаружение изменений, а также разработка методов 
аугментации для повышения устойчивости к сложным, аппликативным помехам. В ходе 
многочисленных экспериментов показано, что предложенные гибридные модели демон-
стрируют конкурентоспособную или превосходящую точность при значительно мень-
ших вычислительных затратах и меньшем числе параметров. Таким образом, работа вно-
сит вклад в создание более эффективных и устойчивых архитектур глубокого обучения 
для широкого спектра задач обработки изображений.
Ключевые слова: обработка изображений, глубокие нейронные сети, трансформеры, свёр-
точные сети, гибридные архитектуры, алгоритмы аугментации, аппликативные помехи.

Введение

В последние годы методы обработки изображений достигли значительных успехов бла-
годаря применению глубоких нейронных сетей. Современные модели строятся на принци-
пе автоматического извлечения признаков изображения различного уровня абстракции. Эти 
многоуровневые иерархические представления признаков обеспечивают универсальную ос-
нову для решения разнообразных задач обработки изображений, таких как классификация 
объектов, детекция, семантическая сегментация, восстановление изображений и обнаруже-
ние изменений. На сегодняшний день современные методы обработки изображений широко 
используют свёрточные нейронные сети (CNN) и визуальные трансформеры (ViT).

Исторически CNN впервые продемонстрировали возможность эффективно извлекать ие-
рархические признаки из изображений, начиная от простых границ и текстур на первых сло-
ях и заканчивая сложными объектными представлениями на глубоких слоях. Благодаря сво-
ей архитектуре, включающей свёртки, пулинг и нелинейные функции активации, такие сети 
позволяют автоматически выявлять значимые признаки для решения задач компьютерного 
зрения без необходимости их ручного формирования. Однако основной недостаток данно-
го подхода связан с локальностью свёрточных фильтров: CNN плохо учитывают глобальный 
контекст, что часто является критически важным для понимания объектов, находящихся в 
различных частях сцены.

1. Анализ современных направлений исследований и решаемые задачи

На фоне стремительного прогресса в обработке естественного языка и появления архитек-
туры трансформеров [1] в последние годы наблюдается значительный рост интереса к адапта-
ции трансформерной архитектуры, включая механизмы самовнимания, изначально разрабо-
танные для языковых моделей, к задачам анализа изображений. Такой переход стал возможен 
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благодаря тому, что самовнимание позволяет гибко учитывать глобальные взаимосвязи меж-
ду различными областями входных данных — то, с чем свёрточные сети справляются ограни-
ченно из-за локальности своих фильтров. С момента появления первого Vision Transformer 
(ViT) [2] трансформерные архитектуры зарекомендовали себя как мощный инструмент для 
решения широкого спектра задач компьютерного зрения (КЗ). 

Однако, несмотря на значительные успехи, современные модели трансформеров всё ещё 
имеют ряд ограничений.

1. Трансформеры демонстрируют снижение эффективности при работе с небольшими на-
борами данных. Это связано с тем, что они не обладают так называемой индуктивной предвзя-
тостью (априорными предположениями о характере данных и их зависимостях). В отличие от 
СНС, которые используют локальные свёртки для обработки взаимосвязей между пикселя-
ми, трансформеры полагаются на механизм многоголового самовнимания (Multi-Head Self-
Attention, MHSA), требующий значительного объёма данных для обучения. Всё это делает их 
склонными к переобучению в условиях малой обучающей выборки.

2. Рост точности трансформеров обычно достигается путём увеличения размеров моделей 
и глубины архитектуры, что приводит к существенному росту вычислительных затрат. Это 
затрудняет их использование в условиях ограниченных вычислительных возможностей.

3. Трансформеры обрабатывают признаки в рамках определённых масштабов на каждом 
уровне иерархии сети, но не учитывают возможную вариативность масштабов объектов в 
рамках слоя внимания. Это приводит к неспособности эффективно захватывать информатив-
ные признаки объектов различного размера, а также снижает эффективность голов MHSA, 
поскольку они будут склонны выявлять схожие зависимости, что уменьшает разнообразие 
внимания и, в свою очередь, вызывает избыточность вычислений [3].

4. Механизм самовнимания часто формирует множество нерелевантных связей между то-
кенами, порождая избыточное внимание. Кроме того, его квадратичная сложность по числу 
токенов существенно повышает вычислительные затраты при работе с изображениями высо-
кого разрешения. Эти факторы снижают эффективность моделей и повышают риск переобу-
чения. Попытки упростить внимание уменьшают гибкость модели и могут привести к пропу-
ску важных токенов (ключей и значений). 

5. Недавние исследования показывают, что свёрточные нейронные сети также могут дости-
гать конкурентоспособных показателей эффективности в задачах обработки изображений, о 
чём свидетельствуют результаты, представленные в таких работах, как ConvNeXt [4], MSCAN 
[5], RepLKNet [6] и SLaK [7].

На практике эти ограничения усугубляются в реальных сценариях применения (например, 
в системах видеонаблюдения, аэрокосмического мониторинга, медицинской диагностики и 
др.), где изображения часто содержат аппликативные помехи, такие как атмосферные осадки, 
артефакты или другие сложные воздействия, что значительно затрудняет извлечение инфор-
мативных визуальных признаков для решения задач КЗ. В таких условиях особенно важно 
использовать модели и алгоритмы аугментации, способные генерировать синтетические об-
учающие данные с реалистичными искажениями, отражающими реальные условия съёмки. 
Это позволяет воспроизводить погодные эффекты, шумы сенсоров и другие виды помех без 
необходимости ручного сбора данных в каждом возможном сценарии. Благодаря этому удаёт-
ся компенсировать нехватку или несбалансированность исходных выборок и повысить устой-
чивость моделей к вариативности входных данных и сложным внешним воздействиям.

В связи с изложенным в качестве важного направления исследований и разработок в об-
ласти КЗ, как нам представляется, является создание новых гибридных архитектур глубоких 
нейронных сетей, сочетающие преимущества CNN и ViT, с одновременной модернизацией 
механизмов внимания для снижения переобучения и вычислительной сложности. В этом пла-
не центральное место занимает научное обоснование принципов построения таких моделей, 
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особое внимание уделяется кодирующей части, которая служит для извлечения информатив-
ных визуальных признаков и может применяться универсально для решения различных задач 
компьютерного зрения, включая классификацию, сегментацию, восстановление и обнаруже-
ние новизны.

В рамках этих исследований нами видится важным решение трех основных научных задач.
Первая задача направлена на теоретическое обоснование новых методов структурной 

регуляризации механизма внимания, основанных на использовании мультипликативных и 
аддитивных стохастических компонентов в трансформерных модулях, создание методов и 
алгоритмов деформируемого и прореженного внимания, обеспечивающих использование 
наиболее информативных участков изображения. Новизна заключается в создании алгорит-
мов, которые выявляют и интегрируют информативные фрагменты в модули внимания на-
прямую в процессе обработки тензорных потоков.

Вторая задача направлена на создание и исследование новых гибридных архитектур для 
решения комплекса задач компьютерного зрения: классификации, семантической сегмента-
ции и обнаружения новизны. Ядром моделей-кодировщиков станет свёрточный модуль мно-
гомасштабного восприятия с параллельной многоветвевой структурой, а также эффективные 
канальные и пространственные механизмы деформируемого и прореженного внимания. Та-
кой подход позволит объединить сильные стороны CNN — в извлечении локальных призна-
ков разных масштабов, и ViT — в захвате глобальных зависимостей данных, обеспечивая тем 
самым более качественное извлечение информативных визуальных признаков, что в свою 
очередь позволит повысить качество анализа изображений.

Третья задача связана с созданием нового подхода к аугментации изображений с целью 
повышения устойчивости моделей при обработке данных в условиях аппликативных помех, 
например, атмосферных осадков или артефактов. Для этого могут использоваться гибридные 
модели с модулем перекрестного внимания для извлечения помех (например, осадков или ар-
тефактов) зашумленного изображения и их включении в исходное изображение. Новизна та-
кой постановки заключается также в комплексном подходе, в котором обучение моделей для 
аугментации и восстановления проводится совместно по циклической схеме, что обеспечива-
ет высокую реалистичность при переносе помех.

2. Предлагаемы модели гибридных нейронных сетей

2.1. Гибридная архитектура для задач классификации и сегментации

Предлагаемая архитектура SegTwice представляет собой гибридное решение, объединяю-
щее трансформеры и свёрточные нейронные сети в рамках общей структуры кодер-декодер 
(рис. 1). 

В основе предлагаемого подхода лежит стремление использовать сильные стороны обоих 
методов: свёрточные нейронные сети — для эффективного извлечения локальных признаков, 
а трансформеры — для захвата глобальных зависимостей. Введение свёрточных слоёв допол-
нительно усиливает индуктивную предвзятость сети, что способствует повышению её эффек-
тивности и снижению риска переобучения в условиях малой выборки.

В рамках данной архитектуры предлагается новая кодирующая сеть TWICE-DA (от англ. 
Transformer With Integrated Multi-Scale Convolutional Extractor and Deformable Attention) с ие-
рархической структурой из 4 уровней (рис. 2).

Гибридность архитектуры достигается путём введения блока трансформера, включающего 
следующие новые ключевые архитектурные решения:

1. Модуль многомасштабного восприятия (Multi-Scale Perception Unit, MSPU), использует 
несколько параллельных свёрточных ветвей для извлечения признаков в разных масштабах. 
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Размещается перед механизмом MHSA, чтобы усилить позиционную информацию о положе-
нии объектов на изображении. 

2. Эффективный модуль канального внимания (Effecient Channel Attention, ECA), дина-
мически выделяет наиболее информативные каналы, усиливая важные признаки и подавляя 
менее значимые.

3. Модуль деформируемого многоголового внимания (Deformable Multi-Head Attention, 
DMHA) динамически фокусируется только на определённых релевантных областях изображе-

Рис. 1. Общий вид предлагаемой архитектуры SegTwice

Рис. 2. Архитектура сети TWICE-DA
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ния, уменьшая таким образом вычислительную сложность модели и улучшая качество внима-
ния. Если традиционный MHSA учитывает всевозможные попарные связи между пикселями, 
то DMHA производит выбор ограниченного числа ключевых точек для извлечения ключей Q 
и значений V, чье расположение определяется обучаемыми смещениями.

4. Модуль свёрточной сети прямого распространения (Convolutional Feed-Forward 
Network, ConvFFNeXt) обеспечивает канальное взаимодействие признаков, улучшая их ин-
формативность и выраженность. Для этого реализуется облегчённая версия FFN, в которой 
перед полносвязными слоями добавляется depthwise-свёртка.

Нами были проведены эксперименты на задаче классификации изображений для оценки 
обобщающей способности и эффективности извлечения признаков TWICE-DA на данных 
разной сложности CIFAR-100 и Caltech-256 (табл. 1). Установлено, что TWICE-DA, обладая 
меньшим количеством обучаемых параметров и вычислительной сложностью, превосходит 
большинство современных моделей, незначительно уступая только MSCAN-S. Трансформеры 
MiT-B1, Swin-T, Twins-SVT-S, показывают более низкие результаты, что подтверждает слож-
ность их обучения на относительно небольших и несбалансированных наборах данных.

Тестирование предлагаемой архитектуры SegTwice для задачи семантической сегментации 
проводилось на популярных аэрокосмических наборах данных LoveDA и Potsdam. Результа-
ты тестирования представлены в табл. 2 и 3. Исходя из проведённых экспериментов, можно 
сделать вывод, что предлагаемая архитектура SegTwice не уступает в точности традиционным 
моделям и современным трансформерам, демонстрируя высокие и конкурентоспособные по-
казатели при значительно меньшем количестве обучаемых параметров.

Таблица 1
Сравнительный анализ точности TWICE-DA и других современных моделей

Модель Параметры FLOPs CIFAR-100 Caltech-256
EfficientNetV2-S 20,5M 2,8G 78,49 72,87
ConvNeXt-T 28,0M 4,4G 74,37 64,44
MSCAN-S 13,6M 2,6G 81,00 75,91
MiT-B1 13,3M 1,6G 77,77 63,49
Swin-T 27,7M 4,3G 76,21 63,92
Twins-SVT-S 23,7M 2,8G 75,94 63,13
CvT-13 19,7M 4,0G 77,10 66,43
TWICE-DA 13,1M 1,8G 80,98 74,41

Таблица 2
Сравнительный анализ точности SegTwice и других современных моделей на LoveDA

Модель Кодер Параметры
Классы (IoU)

mIoU
1 2 3 4 5 6 7

DeepLabV3+ ResNet50 39,6M 43,0 50,9 52,0 74,4 10,4 44,2 58,5 47,62
HRNet HRNet-W48 75,9M 44,6 55,3 57,4 74,0 11,1 45,3 60,9 49,79
SegFormer MiT-B1 13,7M 42,2 56,4 50,7 78,5 17,2 45,2 53,8 49,14
UperNet Swin-T 60,0M 43,3 54,3 54,3 78,7 14,9 45,3 59,6 50,00
AerialFormer-T Swin-T 42,7M 45,2 57,8 56,5 79,6 19,2 46,1 59,5 52,00
UperNet ViT-L12×4 80,6M 46,2 60,6 57,3 76,9 16,1 47,5 62,2 52,38
MTP InternImage-XL 335,0M 46,8 62,6 59,0 82,3 17,5 47,6 63,4 54,17
SegTwice TWICE-DA 13.5М 43,3 56,2 56,8 79,2 15,2 44,4 63,6 51,27
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Следует подчеркнуть, что представленные результаты были получены без предваритель-
ного обучения TWICE на ImageNet, а также с использованием простейшего MLP декодера 
(с 0,5М параметров). Однако, несмотря на это, модель успешно справляется улавливать как 
глобальный, так и локальный контекст, эффективно сегментируя как крупные объекты, так и 
мелкие детали.

2.2. Сиамская гибридная архитектура трансформера для обнаружения изменений

 В ходе наших исследований в области создания гибридных архитектур предложена  легко-
весная сиамская архитектура X-ChangeNet на основе иерархического трансформера с усовер-
шенствованным механизмом сопоставления разновременных признаков (рис. 3).

Ключевым нововведением в предлагаемой архитектуре X-ChangeNet является механизм 
сопоставления STTB, который реализует выявление различий между разновременными при-
знаками (рис. 4).

STTB состоит из трёх последовательно расположенных модулей, каждый из которых игра-
ет специфическую роль в формировании финальных карт различий.

Модуль многомасштабной попарной корреляции (Multi-Scale Pairwise Correlation Unit, 
MSPCU) выполняет выявление базовых структурных различий между признаками через по-

Таблица 3
Сравнительный анализ точности SegTwice и других современных моделей на Potsdam

Модель Кодер Параметры
Классы (F1-Score)

mF1 mIoU
1 2 3 4 5 6

DeepLabV3+ ResNet50 39,6M 89,3 92,8 83,3 78,4 88,2 31,6 77,3 66,8
DANet ResNet18 12,6M 88,5 92,7 78,8 85,7 73,7 43,2 77,1 65,3
SCAttNet V2 ResNet50 26,6M 90,0 94,0 84,1 79,8 89,1 33,6 78,4 68,3
SegFormer MiT-B1 13,7M 92,9 96,4 86,9 88,1 95,2 58,9 86,4 78,0
UperNet Swin-T 60,0M 93,5 97,0 87,4 88,6 96,1 56,9 86,6 78,5
AerialFormer-T Swin-T 42,7M 93,5 96,9 87,2 89,0 95,9 62,5 87,5 79,5
SegTwice TWICE-DA 13,5М 91,1 95,6 85,1 86,0 91,1 52,2 83,5 74,0

Рис. 3. Общий вид предлагаемой архитектуры X-ChangeNet
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парную конкатенацию и многомасштабную групповую свёрт-
ку, обеспечивая пространственно-временной анализ и фоку-
сировку трансформера на наиболее информативных областях.

Многомасштабный трансформер на основе локальных 
окон (Multi-Scale Window Transformer Block, MSWin Block) уси-
ливает значимые признаки и моделирует сложные локальные и 
региональные зависимости с помощью механизма многомас-
штабного оконного внимания, который параллельно обрабаты-
вает несколько масштабов для более точного анализа признаков.

Деформируемый трансформер на основе патчей 
(Deformable Patch Transformer Block, DePatch Block) применя-
ет деформируемое внимание на уровне патчей, позволяя фо-
кусироваться на значимых структурных изменениях, снижать 
вычислительную нагрузку и сохранять глобальный контекст.

Тестирование предлагаемой архитектуры X-ChangeNet 
для задачи обнаружения элементов новизны проводилось на 
популярных аэрокосмических наборах данных LEVIR-CD и 
CDD Dataset (season-varying). Результаты тестирования пред-
ставлены в табл. 4.

Исходя из результатов проведённых экспериментов, мож-
но сделать вывод, что предлагаемая архитектура X-ChangeNet 
демонстрирует высокие и конкурентоспособные показатели 
точности, превосходя большинство современных моделей 
при значительно меньшем количестве обучаемых параметров, 
что подтверждает эффективность предлагаемого механизма 
сопоставления STTB.

Рис. 4. Модуль сопоставления 
разновременных признаков 

STTB
Таблица 4

Сравнительный анализ моделей на наборах данных LEVIR-CD и CDD Dataset
Модель Параметры LEVIR-CD CDD Dataset

FC-EF 1,4M 83,40 59,20
FC-Siam-diff 1,4M 86,31 69,20
FC-Siam-conc 1,5M 85,86 63,70
UNet++_MOSF 11,0M 85,86 88,31
SNUNet-CD 12,0M 88,16 95,30
IFN 36,0M 88,13 90,30
DASNet 16,3M 79,91 91,19
STANet 12,2M 87,26 91,50
BIT 4,0M 89,31 94,61
ChangeFormer 41,02M 90,40 94,63
FTN – 91,01 –
Changer 11,3M 92,33 –
TinyCD 0.3M 91,05 –
SMBCNet 10,1M 90,87 –
LightCDNet-large 2,8M 91,43 –
SiamixFormer-5 175.2M 91,58 94,51
X-ChangeNet 5,8M 91,91 97,81
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2.3. Модель WeatherTransformer для синтеза условно-реальных изображений 
на основе трансформера с перекрестным вниманием

Предлагаемая схема модели WeatherTransformer реализует метод «экстракции-включения», 
который осуществляет перенос аппликативных помех и других видов искажений естественного 
и искусственного происхождения с одного изображения на другое. В ходе исследований фокус 
был направлен, прежде всего, на синтезировании изображений сцен в условиях различных ат-
мосферных осадков, что часто мешает эффективному применению систем видеонаблюдения.

При подготовке обучающей выборки для выделения помехи и нанесения ее на изображе-
ние-шаблон проводится решение обратной задачи — восстановления зашумленных изобра-
жений с помощью модели SwinIR или другой продвинутой модели. Такой подход позволяет 
решить проблему отсутствия парных данных. Имея только зашумленное изображения, мож-
но получить восстановленное изображение и шаблон. Архитектура WeatherTransformer соче-
тает в себе сильные стороны сверточных слоев (локальная инвариантность и иерархичность 
представлений) и трансформеров (глобальное внимание и адаптивность к контексту). Модель 
принимает на вход два изображения: исходное чистое изображение и изображение-шаблон 
(референс) с примером целевого погодного эффекта. На выходе формируется исходное изо-
бражение с наложенным эффектом погодного шаблона.

Общая архитектура включает три основных блока: сверточный кодер, трансформер с пе-
рекрестным вниманием и сверточный декодер (рис. 5). Кроме того, используется позицион-

Рис. 5. Общий вид архитектуры WeatherTransformer
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ное кодирование для сохранения пространственных связей между частями изображения. Для 
обучения модели в работе предложено использовать составную функцию потерь weatherLoss, 
учитывающую контентное, структурное и перцептуальное сходство: 

	 0.7 0.2 0.1 .total content struct percL L L L= + +
В табл. 5 приведены показатели степени реалистичности получаемых синтетических изо-

бражений, полученные при обучении на данных их датасета All-Weather, включающего в себя 
изображения с дождем (Raindrop), снегом (Snow100K) и туманом (Outdoor-Rain) с соответ-
ствующими эталонами; всего около 20 тысяч обучающих изображений и 1 тысяча тестовых. 
На рис. 6 даны примеры синтезированных изображений. Из результатов видно, что при син-
тезе искажений модель WeatherTransformer улучшила метрики по сравнению с известными 
архитектурами.

Заключение

В рамках данной работы были исследованы современные методы обработки изображений 
на основе глубоких нейронных сетей, выявлены ключевые ограничения существующих архи-
тектур (CNN и ViT). В ответ на эти вызовы были разработаны и экспериментально апробиро-
ваны новые гибридные архитектуры. Эти модели, сочетающие преимущества CNN и ViT, на-
правлены на повышение эффективности и устойчивости систем компьютерного зрения (КЗ) 
для решения целого ряда критически важных задач, таких как: классификация, семантическая 

Таблица 5
Сравнение методов при синтезе изображений в плохих погодных условиях

Метод PSNR (↑) SSIM (↑) FID (↓)
CycleGAN 21.604 0.639 47.073
HRIGNet 18.595 0.747 32.111
WeatherTransformer 21.88 0.78 30.47
WeatherTransformer 22.30 0.79 29.80

                                            а)                                      б)                                      в)
Рис. 6. Примеры обработки изображений с помощью WeatherTransformer

a) — исходное изображение, б) — референс, в) — синтезированное изображение
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сегментация, обнаружение изменений, а также разработка методов аугментации для повыше-
ния устойчивости к аппликативным помехам. Полученные результаты демонстрируют конку-
рентоспособную или превосходящую точность наших гибридных моделей при значительно 
меньших вычислительных затратах и параметрической сложности.

Исходя из полученных результатов, в ходе дальнейших исследований целесообразно сосре-
доточиться на масштабировании и унификации разработанных подходов. В первую очередь 
необходимо провести комплексную оптимизацию гиперпараметров архитектуры TWICE-DA, 
затем осуществить реализацию нескольких вариантов моделей TWICE-DA различного раз-
мера — Tiny (T), Small (S) и Large (L), что позволит адаптировать сеть под разные сценарии 
применения. Для оценки и дальнейшего повышения обобщающей способности этих моделей 
планируется проведение их предварительного обучения на крупном наборе данных ImageNet. 
Завершающим этапом станет ввод TWICE-DA в качестве кодирующей сети для архитектур 
X-ChangeNet и WeatherTransformer с целью унификации и повышения эффективности извле-
чения визуальных признаков.
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РОЛЬ ИНСТРУМЕНТОВ ИНТЕЛЛЕКТУАЛЬНОГО СОПРОВОЖДЕНИЯ СОТРУДНИКОВ 
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Аннотация. В работе рассмотрен комплексный анализ роли инструментов интеллек-
туального сопровождения в современных организациях в контексте коммуникативных 
платформ трудового взаимодействия. В условиях растущей роли информационных тех-
нологий в организациях и управлении персоналом, проблема организационного взаимо-
действия сотрудников, развитие компетенций и оптимизации производительности труда 
является актуальной. Представлены практические решения позволяющие автоматиче-
ски анализировать коммуникации сотрудников и выстраивать персональные траекто-
рии развития на основе данных коммуникативных платформ. Практическая значимость 
исследования заключается в интеллектуализации процессов управления персоналом за 
счет использования ситуационного ИИ-центра сопровождения сотрудников.
Ключевые слова: интеллектуальное сопровождение, производительность труда, органи-
зационное взаимодействие, компетенции сотрудников, управление персоналом, ситуаци-
онный ИИ-центр.

Введение

Современные организации сталкиваются с необходимостью объективной оценки эффек-
тивности работы сотрудников. Существующие варианты оценки производительности не в 
полной мере отражают полноту анализа в контексте причин, связанных с взаимодействием 
сотрудников организации. Особую значимость приобретают вопросы использования челове-
ческого капитала, что обусловлено ростом конкуренции на трудовом рынке. Актуальность ис-
следования обусловлена наличием существенного разрыва между технологическими возмож-
ностями современных платформ трудового взаимодействия и их практическим применением 
в управленческой деятельности. Включение ситуационных ИИ-центров позволит перейти к 
объективной оценке эффективной работы персонала [1].

В табл. 1 приведена классификация инструментов интеллектуального сопровождения в со-
временных организациях в контексте корпоративных платформ, представленных в категории 
инструментов.

Таблица 1
Классификация инструментов интеллектуального сопровождения

Категория инструментов Основные функции Примеры реализации
Аналитические платформы Мониторинг 

производительности труда
Анализ выполнения KPI, 
отслеживание рабочего 
времени

Системы развития 
компетенций

Персональная траектория 
обучения, оценка навыков

Рекомендация обучающего 
контента, курсы повышения 
квалификации

Платформы коммуникаций Анализ взаимодействий 
между сотрудниками, 
выявление деструктивного 
поведения

Анализ тональности 
сообщений, анализ 
социальных сетей 
сотрудников
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Объединение вышеописанных направлений в единый ситуационный ИИ-центр позволяет 
достичь синергетического эффекта, когда результаты каждого модуля усиливают и дополняют 
друг друга [2].

На рису. 1 представлен концептуальный подход к работе ситуационного ИИ-центра сопро-
вождения сотрудников.

Ситуационный ИИ-центр анализирует данные из всех модулей и формирует дальнейшие 
пути развития, учитывающие взаимосвязь между производительностью, компетенциями и 
коммуникациями сотрудников. Например, если в социальных сетях обнаружены следы де-
структивного поведения, то с сотрудником будет проведена профилактическая беседа и пред-
ложение пройти корпоративный тренинг по развитию коммуникативных навыков [3].

Компонентами ситуационного центра являются гибридные архитектуры семантического 
анализа и обработки естественного языка при взаимодействии с сотрудниками организаций. 
Генерация сценариев может осуществляться архитектурами нейронных сетей и классифика-
ция вариантов через алгоритмы машинного обучения [4,5].

В табл. 2 приведена планируемая эффективность трудовой деятельности за счет внедрения 
ситуационного ИИ-центра в деятельность организаций.

Таблица 2
Планируемое повышение качества и эффективности ведения трудовой деятельности 

за счет внедрения ситуационного ИИ-центра
Показатель Основные эффекты

Производительность труда Рост производительности труда
Обучение новым компетенциям Рост получаемых новых компетенций
Коммуникации сотрудников Рост качества коммуникаций персонала
Вовлеченность сотрудников в деятельность 
организации

Своевременное выявление и решение 
проблем

Рис. 1. Ситуационный ИИ-центр сопровождения сотрудников
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В рамках дальнейшего развития предусмотрено развертывание единого дашборда с визу-
ализацией ключевых показателей, объединение с HR-системами и корпоративными платфор-
мами, а также интеллектуальную систему рекомендаций для принятия кадровых решений [6].  
Ключевыми причинами для реализации данных улучшений являются: потребность в консо-
лидации данных; снижение когнитивной нагрузки; повышение точности кадровых решений.

Заключение

Рассмотренный вариант классификации инструментов интеллектуального сопровожде-
ния и структурное представление компонентов схемы ситуационного ИИ-центра с идентифи-
кацией показателей эффективности взаимодействия может иметь прикладное значение при 
организации взаимодействия сотрудников с последующей поддержкой принятия решений ру-
ководством организаций. Данный подход позволяет создать устойчивую систему управления 
персоналом, где анализ производительности, развитие компетенций и оптимизация коммуни-
каций создают синергетический эффект для организаций, обеспечивая долгосрочную конку-
рентоспособность на рынке.

Дальнейшие исследования могут быть направлены на внедрение ситуационных ИИ-цен-
тров в различные организационные структуры.
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Аннотация. В статье рассматривается разработка Telegram-бота для сбора и систематиза-
ции сведений о туристических объектах. Актуальность проекта связана с ростом потреб-
ности в удобных сервисах для быстрого получения структурированной туристической 
информации. Целью работы является создание эффективного инструмента, способству-
ющего популяризации локального туризма. В рамках исследования представлена архи-
тектура системы на основе Python и фреймворка aiogram, а также базы данных SQLite для 
хранения информации об объектах. Описывается реализованный функционал, включа-
ющий категоризацию мест, предоставление детальных описаний с фотографиями и ин-
теграцию с API Яндекс.Карт. В работе обосновывается эффективность выбранного тех-
нологического стека для создания информационных сервисов в туристической отрасли.
Ключевые слова: чат-бот, Telegram Bot API, туризм, информационная система, Python, 
aiogram, SQLite, база данных, интерактивный гид.

Введение

Современный этап развития информационных технологий характеризуется повсемест-
ным проникновением мессенджеров в повседневную жизнь. Такая платформа, как Telegram, 
стала не только средством коммуникации, но и мощным инструментом для автоматизации 
сервисов и предоставления услуг. Одной из перспективных областей применения является со-
здание чат-ботов — программ, имитирующих человеческое общение и выполняющих полез-
ные функции для пользователя.

В контексте туристической отрасли существует устойчивая потребность в оперативном 
получении структурированной и достоверной информации о достопримечательностях, ин-
фраструктуре и услугах. Традиционные методы (буклеты, сайты) зачастую неудобны для ис-
пользования «на ходу». Чат-бот, интегрированный в популярный мессенджер, позволяет ре-
шить эту проблему, предоставляя пользователю интуитивно понятный интерфейс для поиска 
интересующих мест, не выходя из мессенджера.

Целью данной работы является разработка и реализация чат-бота, который объединяет 
информацию о туристических местах Воронежа.

Для достижения поставленной цели необходимо было решить следующие задачи: спроек-
тировать структуру базы данных для хранения информации о туристических объектах; реа-
лизовать модуль взаимодействия с базой данных; разработать пользовательский интерфейс 
бота, включая систему команд и интерактивных меню; интегрировать функционал для предо-
ставления детальной информации о местах, включая фотографии и построение маршрутов; а 
также обеспечить корректную обработку пользовательских запросов и ошибок. 

1. Теоретическая часть

1.1. Чат-боты как класс программного обеспечения

Чат-бот — это программный агент, способный к диалогу с пользователем на естествен-
ном языке или с помощью структурированных команд в текстовом канале. В основе работы 
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большинства современных ботов лежит архитектура «клиент-сервер», где клиентом высту-
пает мессенджер, а серверная логика реализована на стороне разработчика. Telegram предо-
ставляет для этого мощный Bot API, позволяющий получать сообщения от пользователей и 
отправлять им ответы, используя HTTP-запросы.

1.2. Технологический стек разработки

Для реализации бота был выбран язык программирования Python [4,5], что обусловлено 
его простотой, читаемостью и наличием богатой экосистемы библиотек. Ключевой библио-
текой является aiogram [2] — современный асинхронный фреймворк для Telegram Bot API. 
Асинхронность позволяет боту эффективно обрабатывать запросы от множества пользовате-
лей одновременно без блокировки основного потока выполнения, что критически важно для 
производительности.

В качестве системы управления базами данных была выбрана SQLite [3]. Это обосновано ее 
легкостью, встраиваемостью, отсутствием необходимости в отдельном серверном процессе и 
достаточной производительностью для задач проекта с невысокой нагрузкой. SQLite идеально 
подходит для прототипирования и для проектов, где все данные хранятся локально в одном 
файле.

1.3. Архитектура разрабатываемого решения

Архитектура бота следует классической трехзвенной схеме:
1. Уровень представления (Presentation Layer): интерфейс взаимодействия в Telegram, 

включающий кнопки, команды и сообщения.
2. Уровень бизнес-логики (Business Logic Layer): ядро бота, написанное на Python с исполь-

зованием aiogram. Этот уровень обрабатывает команды, формирует запросы к базе данных и 
генерирует ответы.

3. Уровень данных (Data Layer): база данных SQLite, отвечающая за надежное хранение ин-
формации о туристических местах. 

2. Проектирование и реализация

2.1. Проектирование и реализация базы данных

Для хранения информации о туристических объектах была разработана реляционная мо-
дель данных. В ее основе лежит таблица places, структура которой представлена в табл. 1:

Таблица 1
Структура таблицы places

Название поля Тип данных Описание
id INTEGER Первичный ключ, уникальный идентификатор записи.
name TEXT Название места.
description TEXT Развернутое текстовое описание места.
photo_path TEXT Путь к файлу с фотографией места в файловой системе 

сервера.
address TEXT Физический адрес места.
category TEXT Категория места.
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Данная структура позволяет гибко управлять контентом: добавлять новые места, редакти-
ровать существующие и осуществлять выборку по категориям. Для обеспечения целостности 
данных поле id объявлено как PRIMARY KEY AUTOINCREMENT, а для оптимизации запро-
сов на выборку по категориям рекомендуется создать индекс по полю category.

2.2. Реализация модуля работы с базой данных

Взаимодействие с базой данных осуществляется с помощью стандартной библиотеки 
Python sqlite3 [3]. В коде бота реализованы две ключевые функции, инкапсулирующие запро-
сы к базе данных.

Функция get_places_by_category(category) предназначена для получения списка всех мест, 
принадлежащих к определенной категории. Она выполняет SQL-запрос SELECT id, name 
FROM places WHERE category = ?, который возвращает идентификаторы и названия мест, от-
сортированные по алфавиту. Использование параметризованного запроса (?) предотвращает 
возможность SQL-инъекций.

Функция get_place_by_id(place_id) используется для получения полной информации о кон-
кретном месте по его идентификатору. Запрос SELECT name, description, photo_path, address 
FROM places WHERE id = ? извлекает все необходимые данные для формирования карточки 
объекта.

Обе функции обеспечивают корректное открытие и закрытие соединения с базой данных, 
что гарантирует отсутствие утечки ресурсов.

2.3. Реализация пользовательского интерфейса и логики бота

Логика бота построена на обработчиках сообщений и callback-запросов от инлайн-кнопок, 
что предусмотрено архитектурой Telegram Bot API [1].

Обработчик команды /start. При получении команды /start бот отправляет приветствен-
ное сообщение и открывает главное меню, реализованное в виде ReplyKeyboardMarkup. Это 
меню содержит четыре кнопки с категориями: «Парки», «Памятники», «Кафе», «Отели». Ис-
пользование Reply-клавиатуры значительно упрощает взаимодействие для пользователя, из-
бавляя его от необходимости запоминать команды [1].

Обработчик выбора категории. Когда пользователь нажимает на одну из кнопок категорий, 
срабатывает обработчик, который с помощью словаря category_map преобразует текст кнопки 
в системное имя категории (например, «Парки» в «park» и аналогично с другими категория-
ми). Затем вызывается функция get_places_by_category(category). Если для выбранной катего-
рии есть объекты, бот динамически формирует инлайн-клавиатуру (InlineKeyboardMarkup), 
где каждая кнопка соответствует одному объекту. Это демонстрирует принцип адаптивного 
интерфейса, который формируется на основе содержимого базы данных.

Обработчик выбора конкретного места. При нажатии на инлайн-кнопку с названием 
объекта генерируется callback-запрос с данными в формате place_{id}. Обработчик извлека-
ет id объекта, запрашивает полную информацию о нем с помощью функции get_place_by_
id(place_id) и формирует ответное сообщение.

Сообщение включает:
• название и адрес, оформленные с помощью HTML-тегов (<b>, <i>) для лучшей визуали-

зации;
• текстовое описание;
• фотографию, если файл по указанному в базе данных пути существует (проверка os.path.

exists(photo_path)). Для отправки фото используется FSInputFile из библиотеки aiogram [2];
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• инлайн-кнопку «Открыть маршрут», которая предоставляет прямую ссылку на Яндекс.
Навигатор. Ссылка формируется динамически путем подстановки адреса объекта в URL-ша-
блон. Это ключевая интеграция с внешним сервисом, которая значительно повышает прак-
тическую ценность бота, так как позволяет пользователю мгновенно перейти к построению 
маршрута.

2.4. Асинхронная модель выполнения

Все обработчики в боте объявлены как асинхронные функции (async def). Запуск бота осу-
ществляется с помощью dp.start_polling(bot) в асинхронном цикле, предоставляемом фрейм-
ворком aiogram [2]. Это означает, что бот не блокируется при выполнении «долгих» операций, 
таких как обращение к базе данных или отправка медиафайлов. Вместо этого он переключает-
ся на обработку других событий, что обеспечивает высокую отзывчивость системы даже при 
увеличении числа пользователей.

3. Апробация разработанного чат-бота

Для проверки работоспособности разработанного чат-бота и демонстрации его функцио-
нальности был проведен ряд тестов. Работа бота была развернута на сервере и протестирова-
на в реальной среде мессенджера Telegram.

Взаимодействие с пользователем начинается с команды /start, на которую бот отвечает 
приветственным сообщением и отображает главное меню в виде Reply-клавиатуры (рис. 1). 
Данный подход интуитивно понятен и сразу направляет пользователя к основному сценарию 
использования — выбору категории мест.

После выбора категории, бот динамически формирует и отправляет инлайн-клавиатуру, 
содержащую список всех доступных мест в данной категории (рис. 2). Список извлекается из 
базы данных в реальном времени, что обеспечивает актуальность информации и позволяет 
легко масштабировать систему, добавляя новые места без изменения кода бота.

Ключевым элементом бота является карточка места (рис. 3). При выборе конкретного 
места из списка пользователь получает исчерпывающую информацию: название, адрес, опи-
сание и фотографию. Интеграция с Яндекс.Навигатором через кнопку «Открыть маршрут» 
предоставляет переход к сервису построения пути, что значительно повышает практическую 
ценность бота, превращая его из справочника в инструмент для реального путешествия.

Рис. 1. Главное меню бота 
после запуска

 Рис. 2. Список мест 
в категории «Памятники»

 Рис. 3. Карточка места
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Проведенное тестирование показало, что разработанный чат-бот успешно решает постав-
ленные задачи. Пользовательский интерфейс является интуитивно понятным и не требует 
дополнительного обучения. Использование асинхронной модели обеспечивает высокую от-
зывчивость бота даже в условиях одновременных запросов от нескольких пользователей. Ин-
теграция с внешним картографическим сервисом является удачным решением, расширяющим 
функциональность приложения.

Заключение

В ходе работы была достигнута поставленная цель — разработан и реализован полнофунк-
циональный Telegram чат-бот для предоставления информации о туристических местах. Ре-
шение успешно интегрирует в себе базу данных SQLite для хранения структурированной ин-
формации и асинхронный Python-модуль на базе фреймворка aiogram для взаимодействия с 
пользователем.

Основные результаты работы:
1. Спроектирована и создана база данных, обеспечивающая надежное хранение и быстрый 

доступ к данным о туристических объектах.
2. Реализован интуитивно понятный пользовательский интерфейс с использованием Reply 

и Inline-клавиатур, что минимизирует усилия пользователя по поиску информации.
3. Обеспечена интеграция с внешним картографическим сервисом (Яндекс.Навигатор) для 

построения маршрутов, что расширяет функциональность бота за пределы мессенджера.
4. Применена асинхронная модель программирования, заложившая основу для масштаби-

руемости и высокой производительности решения.
Перспективы дальнейшего развития проекта видятся в добавлении новых функций чат-бо-

та, расширении списка категорий, а также внедрении машинного обучения для персонализи-
рованных рекомендаций на основе истории запросов пользователя.
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ПРИМЕНЕНИЕ МЕТОДОВ СТАТИСТИЧЕСКОГО АНАЛИЗА 
И МАШИННОГО ОБУЧЕНИЯ К ИССЛЕДОВАНИЮ ПСИХОЭМОЦИОНАЛЬНОГО 

СОСТОЯНИЯ ПОЛЬЗОВАТЕЛЕЙ СОЦИАЛЬНЫХ СЕТЕЙ
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Ф. Г. Типикина

Аннотация. В статье рассматривается влияние различных социальных сетей на психоэ-
моциональное состояние пользователей с использованием методов статистического ана-
лиза и машинного обучения. На выборке из 500 респондентов изучены различия в уровне 
счастья, а также выявлены основные факторы, влияющие на уровень стресса. Результаты 
показали отсутствие статистически значимых различий в субъективном уровне счастья 
между пользователями разных платформ, однако ежедневное экранное время оказалось 
единственным значимым предиктором стресса. Модель случайного леса выявила, что 
возраст является важнейшим фактором выбора социальной сети, хотя точность прогно-
зирования платформы была ограничена. Выводы подчеркивают важность контроля вре-
мени, проведенного за экраном, для поддержания психологического благополучия, а не 
фокус на конкретной соцсети.
Ключевые слова: социальные сети, психоэмоциональное состояние, уровень стресса, 
уровень счастья, статистический анализ, машинное обучение, дисперсионный анализ, 
множественная регрессия, случайный лес, экранное время, цифровое потребление, пси-
хологическое благополучие.

Введение

В условиях стремительного развития цифровых технологий социальные сети стали неотъ-
емлемой частью повседневной жизни миллионов людей по всему миру. Платформы, такие как 
Сеть 1, Сеть 2, Сеть 3, Сеть 4, Сеть 5 и Сеть 6, не только обеспечивают коммуникацию и об-
мен информацией, но и влияют на эмоциональное состояние, уровень стресса и субъективное 
ощущение счастья пользователей. В последние годы всё больше внимания уделяется изучению 
связи между использованием социальных сетей и психоэмоциональным благополучием, одна-
ко результаты исследований зачастую остаются противоречивыми [1].

Настоящее исследование направлено на выявление статистически значимых различий в 
уровне счастья между пользователями различных социальных платформ, а также на анализ 
факторов, наиболее сильно влияющих на уровень стресса. В работе применяются методы дис-
персионного анализа (ANOVA), множественной линейной регрессии и машинного обучения 
(случайный лес) для всесторонней оценки взаимосвязей между поведенческими, демографи-
ческими характеристиками респондентов и их психологическим состоянием. Анализ прово-
дится на основе данных из выборки из 500 респондентов, содержащей информацию об ис-
пользуемой социальной платформе, индексе счастья (по шкале от 1 до 10), уровне стресса, 
продолжительности экранного времени, качестве сна, возрасте и других переменных.

Целью исследования является проверка гипотезы о том, что выбор конкретной социаль-
ной сети оказывает значимое влияние на уровень счастья, а также определение главных пре-
дикторов стресса и возможностей прогнозирования используемой платформы на основе лич-
ностных и поведенческих характеристик пользователей.

Нулевая гипотеза 0( ):H  тип социальной сети не влияет на уровень счастья — средние зна-
чения 'Happiness_Index' одинаковы для всех платформ.

Альтернативная гипотеза 1( ):H  по крайней мере у одной платформы средний уровень сча-
стья статистически отличается от других.
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1. Анализ различий в уровне счастья между пользователями социальных платформ

Анализ проведён на выборке из пятисот респондентов из датасета “Mental_Health_and_
Social_Media_Balance_Dataset.xlsx”. Для проверки гипотез использован однофакторный дис-
персионный анализ (ANOVA), в котором зависимой переменной выступал индекс счастья 
('Happiness_Index (1–10)'), а группирующим фактором — предпочитаемая социальная сеть 
('Social_Media_Platform').

Результаты ANOVA показали отсутствие статистически значимых различий в уровне сча-
стья между группами пользователей ( (5, 494) 1.725,F =  0.127).p =  Таким образом, на основа-
нии имеющихся данных гипотеза H0 не отвергается. Различия в средних значениях индекса 
счастья между пользователями Сеть 1, Сеть 2, Сеть 3, Сеть 4, Сеть 5 и Сеть 6 могут быть обу-
словлены случайной изменчивостью, а не систематическим влиянием выбора платформы.

Этот вывод указывает на то, что прямая связь между типом используемой социальной сети 
и субъективным уровнем счастья в данной выборке не подтверждается. 

Визуальный анализ распределения уровня счастья по платформам с помощью boxplot по-
казывает, что пользователи Сеть 6 имеют наибольшее среднее значение счастья ( 8.65),M =  за 
ними следуют Сеть 5 ( 8.52)M =  и Сеть 1 ( 8.35).M =  Пользователи Сеть 2 демонстрируют 
наименьший средний индекс счастья ( 7.99).M =  Однако, как показали результаты дисперси-
онного анализа, эти различия не достигают статистической значимости ( 0.127),p =  что ука-
зывает на необходимость учета других факторов при изучении связи между цифровыми плат-
формами и психоэмоциональным состоянием.

Рис. 1. Результаты однофакторного дисперсионного анализа (ANOVA) для сравнения уровня 
счастья между пользователями различных социальных сетей

Рис. 2. Ящики с усами: распределение среднего уровня счастья 
пользователей различных социальных сетей
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Таблица описательной статистики подтверждает визуальные наблюдения: средний индекс 
счастья варьируется от 7.99 (Сеть 2) до 8.65 (Сеть 6). При этом размер выборки для каждой 
платформы колеблется от 74 (Сеть 2) до 95 (Сеть 3), что позволяет предположить, что незна-
чимость результатов ANOVA может быть обусловлена как недостаточной мощностью теста, 
так и высокой вариабельностью данных внутри групп.

2. Факторы, влияющие на уровень стресса

Для выявления факторов, наиболее сильно влияющих на уровень стресса пользователей 
социальных сетей [3], был применён метод множественной линейной регрессии. Множествен-
ная линейная регрессия [5] показала, что модель объясняет 55.2 % дисперсии уровня стресса 

2( 0.552,R =  0.001).p <  Модель является статистически значимой ( (5, 494) 121.83,F =  
0.000000),p =  что указывает на наличие сильной связи между выбранными предикторами и 

уровнем стресса. Единственным значимым предиктором оказался ежедневное экранное вре-
мя ( 0.709,β =  0.001):p <  каждый дополнительный час использования экрана увеличивает 
уровень стресса на 0.71 балла. Качество сна, возраст, частота физической активности и коли-
чество дней без соцсетей [2] не оказали статистически значимого влияния в данной модели. 

Анализ остатков с помощью Normal Probability Plot показал, что остатки распределены 
нормально, что подтверждает адекватность модели и надёжность полученных результатов.

 

Рис. 3. Описательная статистика индекса счастья по типам используемых социальных сетей

Рис. 4. Результаты множественной линейной регрессии для прогнозирования уровня стресса 
на основе поведенческих и демографических характеристик
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3. Прогнозирование социальной платформы с помощью случайного леса

Также, в рамках исследования была построена модель классификации на основе метода 
случайного леса [4] с целью предсказания предпочитаемой социальной сети по поведенческим 
и демографическим характеристикам респондентов. 

Анализ важности признаков показал, что возраст является наиболее значимым предик-
тором выбора платформы (относительная важность = 1.00), за ним следуют качество сна и 
ежедневное экранное время. Пол проявил наименьшее влияние, что указывает на доминиру-
ющую роль поведенческих факторов над демографическими при принятии решения о выборе 
платформы.

Рис. 5. Нормальный вероятностный график остатков модели 
множественной линейной регрессии

Рис. 6. Важность признаков для прогнозирования используемой социальной сети 
по методу случайного леса
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Матрица классификации демонстрирует распределение ошибок модели на обучающей вы-
борке. Наиболее точно предсказывается платформа Сеть 6 — из 9 наблюдений, все 9 были 
классифицированы верно. Платформы Сеть 5 и Сеть 4 также показали высокую точность (1 и 
2 верных предсказания соответственно). Матрица построена на обучающей выборке, состоя-
щей из 43 наблюдений. В этой подвыборке было 6 наблюдений Сеть 1, из которых модель пра-
вильно предсказала 5; из 6-ти наблюдений Сеть 2 — 1 верное предсказание. Из 6 наблюдений 
Сеть 1 модель правильно предсказала 5, а из 6 наблюдений Сеть 2 — лишь 1. Это может указы-
вать на то, что профили пользователей этих платформ пересекаются с другими или их харак-
теристики недостаточно дискриминативны для данной модели. Общая точность модели на 
этой выборке составляет 23 / 43 53.5 %,≈  что подтверждает сложность задачи классификации 
социальных сетей на основе поведенческих признаков.

Распределение априорных вероятностей [6] показало, что в обучающей выборке наибо-
лее представлены платформы Сеть 5, Сеть 4 и Сеть 6 (по 0.22–0.33), тогда как Сеть 1 и Сеть 2 
встречаются реже (0.11 и 0.00 соответственно). Отсутствие наблюдений для Сеть 2 в обуча-
ющей выборке может объяснить низкую точность его предсказания, отмеченную в матрице 
классификации. 

Рис. 7. Матрица классификации для прогнозирования используемой социальной сети 
с помощью модели случайного леса

Рис. 8. Априорные вероятности и размеры групп для различных социальных сетей 
в обучающей выборке модели случайного леса
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Заключение

Исследование не выявило статистически значимых различий в уровне счастья между поль-
зователями разных социальных сетей ( (5, 494) 1.725,F =  0.127).p =  Средние значения индек-
са счастья варьировались от 7.99 (Сеть 2) до 8.65 (Сеть 6), однако эти различия могут быть 
обусловлены случайной изменчивостью, а не влиянием платформы.

В то же время множественная регрессия показала, что ежедневное экранное время — един-
ственный значимый предиктор стресса ( 0.709,β =  0.001),p <  объясняя 55.2 % его дисперсии. 
Остальные переменные (возраст, качество сна, физическая активность и др.) статистически не 
значимы.

Модель случайного леса для прогнозирования используемой платформы выявила воз-
раст как наиболее важный признак, однако общая точность классификации составила лишь 
~53.5 %, что указывает на сложность и многогранность выбора соцсетей.

Таким образом, важнее не то, какую соцсеть использует человек, а сколько времени он про-
водит за экраном. Для поддержания психологического благополучия целесообразно регулиро-
вать интенсивность цифрового потребления, а не фокусироваться на конкретной платформе.
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ПРОГНОЗИРОВАНИЕ РИСКА СМЕРТНОСТИ ПОСЛЕ ИНФАРКТА МИОКАРДА 
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Я. Ю. Турусова1, И. Л. Каширина2

Аннотация. В статье рассматривается задача прогнозирования риска смертности после 
ИМ с использованием методов машинного обучения. Для исследования сформирована 
выборка пациентов с клиническими, демографическими и метеорологическими характе-
ристиками, прошедшая этапы очистки и отбора признаков. Для построения прогностиче-
ских моделей применены логистическая регрессия, деревья решений, ансамблевые методы 
(Random Forest, градиентный бустинг), а также нейронные. Проведён сравнительный ана-
лиз алгоритмов, по результатам которого наиболее высокую эффективность продемон-
стрировал метод Random Forest, обеспечивший лучшие показатели точности, F1-метрики 
и AUC. Использование SMOTE позволило повысить чувствительность моделей за счёт 
балансировки классов. На основе полученных результатов разработан прототип системы 
поддержки принятия решений для оценки риска летального исхода после ИМ.
Ключевые слова: инфаркт миокарда, смертность, прогнозирование риска, машинное об-
учение, логистическая регрессия, деревья решений, Random Forest, градиентный бустинг, 
нейронные сети, клинические данные, метеорологические параметры, SMOTE, дисбаланс 
классов, AUC, F1-метрика.

Введение

Сердечно-сосудистые заболевания продолжают оставаться одной из ведущих причин 
смертности в мире, а инфаркт миокарда занимает среди них ключевую позицию. Эти патоло-
гии затрагивают не только здоровье отдельных людей, но и оказывают значительное социаль-
но-экономическое воздействие, увеличивая нагрузку на системы здравоохранения. Своевре-
менное выявление факторов риска и раннее вмешательство способны существенно улучшить 
прогноз пациентов и снизить затраты на лечение. В современных условиях развивается все 
больше технологий, направленных на улучшение диагностики и прогнозирования, что откры-
вает новые возможности для персонализированной медицины. Своевременное прогнозиро-
вание риска неблагоприятных исходов после перенесённого инфаркта является важнейшим 
условием повышения эффективности лечения, оптимизации маршрутизации пациентов и 
снижения уровня летальности. В последние годы значительное развитие получили методы 
машинного обучения, позволяющие выявлять скрытые закономерности в больших массивах 
медицинских данных и улучшать качество прогностических моделей. Однако большинство 
существующих отечественных клинических систем по-прежнему ограничены традиционны-
ми статистическими методами и редко учитывают комплекс факторов, включающих клини-
ко-демографические параметры, особенности состояния пациента и влияние внешней среды. 
В этой связи возрастает необходимость создания современных подходов к анализу рисков 
после инфаркта миокарда, использующих интеграцию различных типов данных, включая 
метеорологические и сезонные показатели. Основной целью данного исследования является 
разработка и оценка эффективности моделей машинного обучения для прогнозирования ри-
ска смертности после инфаркта миокарда. Задачи исследования включают формирование и 
очистку базы данных пациентов, определение ключевых факторов, влияющих на исход забо-
левания, построение и сравнение нескольких алгоритмов прогнозирования, а также оценку их 
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точности с применением стандартных метрик качества. Полученные результаты могут стать 
основой для создания системы поддержки принятия врачебных решений, повышающей точ-
ность и своевременность клинических прогнозов. [1–4]

1. Исходные данные

Набор деперсонифицированных данных, предоставленных Воронежским областным кли-
ническим консультативно-диагностическим центром (ВОККДЦ), включает сведения обо всех 
пациентах, перенесших инфаркт миокарда в Воронежской области в период с 2014 по 2017 год. 
Датасет содержит следующие показатели (рис. 1): ID — уникальный идентификатор пациен-
та, AGE — возраст, GENDER — пол, INVALID — наличие инвалидности, AG — артериальная 
гипертензия, IM — инфаркт миокарда, SD — сахарный диабет, FP — факт курения, ONMK — 
острое нарушение мозгового кровообращения в анамнезе, HOBL — хроническая обструктив-
ная болезнь лёгких, HSN — хроническая сердечная недостаточность, LOCAL — локализация 
инфаркта, HOSPIT_TIME — время до госпитализации, KILLIP — класс Killip, TLT — тромболи-
тическая терапия, CHKV — чрескожное коронарное вмешательство, MAX_T — максимальная 
температура воздуха, DELTA_T — суточный перепад температуры, WIND — скорость ветра, 
PRESSURE — атмосферное давление, HUMIDITY — влажность воздуха, CLOUDINESS — об-
лачность, IS_DEAD — летальный исход.

На конец 2017 года база сведений содержала более 14 тысяч записей, включающих сведения 
о пациентах — выборка пациентов с клиническими, демографическими и метеорологически-
ми характеристиками, отражающими как состояние здоровья и факторы риска, так и влияние 
внешних условий, потенциально связанных с исходами инфаркта миокарда.

2. Используемые модели машинного обучения 

В исследовании были применены несколько классов моделей машинного обучения, разли-
чающихся по сложности, интерпретируемости и способности моделировать нелинейные за-
висимости. В качестве базовой интерпретируемой модели использовалась логистическая ре-
грессия, позволяющая оценивать вклад отдельных клинических и демографических факторов 
в риск неблагоприятного исхода. Для моделирования более сложных закономерностей при-
менялись деревья решений, основанные на рекурсивном разбиении признакового простран-
ства и удобные с точки зрения интерпретации. Для повышения устойчивости и точности 
прогнозов использовались ансамблевые методы. В частности, был реализован случайный лес 
(Random Forest), объединяющий множество деревьев решений, построенных на различных 
подвыборках данных и подмножествах признаков. Также применялись алгоритмы градиент-
ного бустинга (включая XGBoost и LightGBM), обучающие деревья последовательно для ми-
нимизации ошибки предыдущих моделей, что обеспечивает высокую точность на структури-
рованном медицинском датасете. Дополнительно исследовались нейронные сети, способные 
моделировать сложные нелинейные зависимости между клиническими, демографическими и 
метеорологическими параметрами. Использовались полносвязные архитектуры с регуляри-
зацией и подбором гиперпараметров. Для повышения надёжности выводов все модели про-

Рис. 1. Фрагмент исходных данных
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ходили процедуру кросс-валидации, а оптимизация выполнялась с использованием методов 
автоматизированного поиска гиперпараметров.

Также в исследовании применялся метод SMOTE (Synthetic Minority Over-sampling 
Technique), который используется для устранения дисбаланса классов в задачах машинного 
обучения и позволяет увеличить представленность редкого класса без простого дублирова-
ния данных. Он создаёт синтетические объекты редкого класса на основе ближайших сосе-
дей существующих примеров, расширяя область их распределения в пространстве признаков. 
Это помогает улучшить качество классификации, повышает разделяемость классов и снижает 
риск переобучения на повторяющихся данных.

3. Сравнительный анализ моделей машинного обучения

Перед применением SMOTE данные были сильно несбалансированы: число пациентов, пе-
реживших инфаркт, значительно превышало число смертельных исходов. Это приводило к 
тому, что модели машинного обучения демонстрировали высокую точность по общему числу 
прогнозов (Accuracy), но относительно низкую чувствительность и F1-score для менее пред-
ставленного класса. Другими словами, модели часто «пропускали» критические случаи, что 
снижало практическую ценность прогнозов. В табл. 1 представлены результаты работы пяти 
алгоритмов на исходных данных без применения SMOTE, оцененные по трём ключевым ме-
трикам: Accuracy, AUC и F1-score.

Таблица 1
Эффективность алгоритмов на исходных данных
Метод Accuracy AUC F1 score

Логистическая регрессия 0.710 0.680 0.420
Алгоритмы градиентного бустинга 0.830 0.780 0.590
Деревья решений 0.790 0.730 0.510
Нейронные сети 0.860 0.880 0.680
Случайный лес 0.890 0.910 0.750

До применения метода SMOTE модели показывают высокую точность, но хуже справля-
ются с выявлением редкого класса (смертельные исходы), что видно по низким значениям F1-
score. Это связано с дисбалансом классов в исходных данных. На рис. 2 приведено сравнение 
по Accuracy, AUC и F1-score до применения метода SMOTE.

Рис. 2. Сравнение по Accuracy, AUC и F1-score (до метода SMOTE)
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Далее для повышения качества моделей и борьбы с дисбалансом классов применялся метод 
SMOTE (Synthetic Minority Over-sampling Technique), который позволил увеличить количество 
наблюдений для менее представленного класса и, как следствие, повысить чувствительность 
моделей. Оценка проводилась по трём ключевым метрикам: Accuracy, AUC и F1-score. Резуль-
таты представлены в табл. 2.

Таблица 2
Эффективность моделей на данных, сбалансированных методом SMOTE

Метод Accuracy AUC F1 score
Логистическая регрессия 0.680089 0.752221 0.650367
Алгоритмы градиентного бустинга 0.823266 0.852928 0.792651
Деревья решений 0.771812 0.784199 0.743073
Нейронные сети 0.861298 0.923966 0.831978
Случайный лес 0.901566 0.957367 0.883905

На основании данных таблицы можно сделать вывод, что наилучшую эффективность про-
демонстрировал алгоритм случайного леса, показавший максимальные значения всех ключе-
вых метрик: Accuracy = 0.901566, AUC = 0.957367 и F1-score = 0.883905. Высокая площадь под 
ROC-кривой подтверждает устойчивость и надёжность модели. Для наглядного сравнения 
результаты представлены на рис. 3.

Заключение

На основе проведённого анализа данных пациентов, перенесших инфаркт миокарда, по-
строена начальная модель прогнозирования риска летального исхода с использованием мето-
дов машинного обучения, включая логистическую регрессию, деревья решений, ансамблевые 
методы и нейронные сети. Для повышения качества моделей и корректной работы с несбалан-
сированными данными применён метод SMOTE, что позволило улучшить чувствительность 
моделей и точность прогноза. Наибольшую эффективность продемонстрировал алгоритм 
случайного леса. Полученные результаты послужили основой для разработки прототипа си-
стемы поддержки принятия решений, способной помогать в оценке риска летального исхода 
и повышать своевременность клинических прогнозов

Рис. 3. Сравнение по Accuracy, AUC и F1- score (после метода SMOTE)
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УДК 004.056

АГЕНТСКИЙ ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В КИБЕРБЕЗОПАСНОСТИ: 
КОНЦЕПЦИЯ И СЦЕНАРИИ ПРИМЕНЕНИЯ

МИРЭА – Российский технологический университет

М. А. Утенкова, Е. А. Максимова

Аннотация. Рассматривается применение агентского искусственного интеллекта как 
перспективного направления для решения задач кибербезопасности. Проведен анализ 
концепции агентского ИИ, его архитектуры и ключевых отличий от систем на основе сиг-
натурного и поведенческого анализа. Определены основные сценарии применения ИИ-а-
гентов в кибербезопасности, такие как автономное расследование инцидентов, проак-
тивный поиск угроз, управление уязвимостями и автоматизация отчетности. Выявлены 
потенциальные риски, связанные с внедрением агентского ИИ, включая компрометацию 
памяти и несанкционированное использование инструментов.
Ключевые слова: агентский искусственный интеллект, кибербезопасность, информаци-
онная безопасность, искусственный интеллект, автономные системы, SOC, расследование 
инцидентов, управление уязвимостями, OWASP, большая языковая модель.

Введение

Статистика количества утечек информации в мире показывает тенденцию к их увеличе-
нию с течением времени. Так, например, количество утечек информации за предыдущие 3 
года выросло в 4–5 раз в сравнении с 2021 годом [2]. При этом, эксперты компании Positive 
Technologies выделяют геополитическую обстановку и темпы цифровизации как ключевые 
факторы, оказывающие наибольшее влияние на ландшафт киберугроз в России [1]. 

Стоит также отметить, что комплексность и сложность кибератак все чаще приводят к 
комбинированным последствиям, которые включают как утечки данных, так и нарушения в 
работе бизнес-процессов. В то же время такие атаки сложнее выявить на основе сигнатурных 
и поведенческих методов. По этой причине появилась потребность в более интеллектуальных, 
адаптивных и автономных системах защиты информации. 

Рис. 1. Количество утечек информации в мире 2013–2024 гг.
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В рамках данного исследования агентский искусственный интеллект (ИИ-агент) рассма-
тривается как возможное решение данной проблемы. ИИ-агент — это автономная система на 
базе искусственного интеллекта, которая способна самостоятельно анализировать запросы, 
принимать решения и выполнять действия. 

1. Концепция агентского искусственного интеллекта

Предлагается следующее определение: ИИ-агент — это автономная система на базе искус-
ственного интеллекта, которая способна самостоятельно анализировать запросы, принимать 
решения и выполнять действия. На сегодняшний день ИИ-агенты активно применяются в 
различных отраслях. Важным отличием агентского ИИ от других видов является то, что он 
способен не просто проанализировать поставленную задачу, а принять решение и выполнить 
действия в соответствии с ним. Если, например, LLM (Large language model) способна предло-
жить решение пользователю, то ИИ-агент благодаря API способен напрямую взаимодейство-
вать с другими сервисами и выполнять действия. 

Компания OWASP предлагает следующую архитектуру агента искусственного интеллекта 
(рис. 2) [3] Ключевыми компонентами архитектуры являются: LLM, агент, инструменты, база 
данных, выполняющая функцию долгосрочной памяти агента. 

Алгоритм работы агента следующий:
1. Поступает пользовательский запрос, который может представлять собой как инструк-

цию человека, так и, например, оповещение от SIEM.
2. Агент подготавливает контекст для LLM, в процессе чего может запросить дополнитель-

ную информацию из базы данных и других сервисов.
3. LLM формирует план действий.
4. Агент выполняет план с помощью инструментов (программы или устройства) через API.
Важно отметить, что на практике могут встречаться также многоагентные системы, кото-

рые включают два и более агентов, которые обмениваются друг с другом информацией и за-
просами. При этом, каждый агент может выполнять свой уникальный набор задач. ИИ-агент 
может быть одним из модулей интеллектуальных СППР [5].

Агентский искусственный интеллект порождает новые киберугрозы [3], перечень которых 
включает: отравление памяти, неправильное использование инструментов, компрометацию 

Рис. 2. Архитектура агента искусственного интеллекта
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привилегий, каскадные атаки с галлюцинациями, несогласованное и обманчивое поведение, 
отказ авторства и невозможность отслеживания и др. В текущих реализациях ИИ-агенты мо-
гут некритично полагаться на данные из своей памяти, что делает их уязвимыми к компроме-
тации. При этом, его работу полностью протестировать невозможно, так как логика принятия 
решения остается неизвестной и ее нельзя отследить. Поэтому на текущем этапе развития тех-
нологий рекомендуется применять средства мониторинга по отношению к ИИ-агентам, кото-
рые могут отследить нежелательные действия и возможно даже предотвратить их.

2. Сценарии применения агентского искусственного интеллекта в кибербезопасности

В контексте кибербезопасности ИИ-агент может быть использован как один из модулей 
SOC, что реализовано, например, в организации Radiant Security [4]. Сценарии применения 
агентского ИИ включают выполнение таких задач, как:

– Автоматическая сортировка и приоритизация оповещений: агент получает оповещение 
от SIEM, запрашивает дополнительную информацию из логов и данных EDR и определяет 
приоритетность оповещений и осуществляет их сортировку.

– Автономное расследование инцидентов информационной безопасности и их корреля-
ция: агент получает оповещение от SIEM, запрашивает дополнительную информацию из ло-
гов и данных EDR, коррелирует их, выдвигает гипотезы о векторе атаки и предоставляет от-
чет, включающий рекомендации по устранению.

– Проактивный поиск угроз: агент генерирует гипотезы о потенциальных векторах атак на 
основе информации об актуальных угрозах, после чего проводит проверки инфраструктуры 
на устойчивость к данным атакам и составляет отчет об обнаруженных угрозах. 

– Управление уязвимостями: в ходе сканирования системы на уязвимости или проактив-
ного поиска угроз агент выявляет новые уязвимости, определяет их критичность [6], при на-
личии патча, тестирует его на устойчивость к обнаруженным уязвимостям, и устанавливает 
его в рабочую систему при минимальном вмешательстве со стороны человека.

– Автоматизированное ведение документации и отчетности: получение информации из 
SIEM и других средств защиты информации и представление ее в формате отчета в соответ-
ствии с заданным шаблоном.

ИИ-агенты необходимы для сокращения повторяющихся задач, ускорения процесса де-
тектирования и реагирования, устранения трудоемких задач, для повышения общего уровня 
безопасности.

Заключение

Таким образом, агентский ИИ является мощным инструментом, который меняет подхо-
ды к кибербезопасности. Тем не менее на текущий момент он также является и источником 
возможных киберугроз. Поэтому к внедрению данной технологии стоит подходить с особым 
вниманием, чтобы минимизировать потенциальные риски и повысить ее эффективность.

Перспективы дальнейших исследований включают разработку безопасной архитектуры 
ИИ-агента и методов обеспечения его надежности, создание стандартов в отношении агент-
ского ИИ, исследование методов объяснимого ИИ для агентских систем и др. 
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СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ ОПРЕДЕЛЕНИЯ ВЕСОВЫХ КОЭФФИЦИЕНТОВ 
OWA-ОПЕРАТОРОВ В ЗАДАЧЕ МНОГОКРИТЕРИАЛЬНОГО ВЫБОРА

Воронежский государственный университет

Д. А. Фефелов, Т. М. Леденева

Аннотация. В условиях многокритериального выбора, когда каждый объект характери-
зуется набором разнородных показателей, возникает задача формирования обобщенной 
оценки объектов, которая позволяет сравнить и ранжировать заданные объекты по пред-
почтительности. Для решения такой задачи существуют операции агрегирования, сре-
ди которых особое место занимают операторы порядкового взвешенного агрегирования 
(Ordered Weighted Averaging–OWA). Данная статья посвящена исследованию применения 
OWA-операторов для построения обобщенных оценок сложных объектов. В ней рассмо-
трены основные подходы к определению весовых коэффициентов, которые определяют 
стратегию агрегирования. На практическом примере выбора инвестиционного проекта с 
помощью различных методов проведен расчет весов и построено итоговое ранжирова-
ние проектов на основе полученных обобщенных оценок. Проведенный анализ позволит 
выявлять наиболее предпочтительные варианты и оценить влияние выбранной страте-
гии агрегирования на конечный результат выбора.
Ключевые слова: агрегирование, OWA-оператор, обобщенная оценка, весовые коэффи-
циенты, стратегия агрегирования.

Введение

В процессе принятия решений часто приходится сталкиваться с необходимостью оценки 
и выбора наилучшего объекта их множества альтернативных вариантов, каждый из которых 
описывается набором частных показателей. Эти показатели могут быть разнородными, иметь 
различные единицы измерения, что делает их прямое сравнение затруднительным и неэффек-
тивным. В этих условиях центральное место занимает задача агрегирования, которая заклю-
чается в построении единой, обобщенной (комплексной, интегральной) оценки объекта на 
основе всей доступной векторной информации. 

Под агрегированием понимается переход от векторной оценки размерности n  к скалярной 
величине, которая комплексно характеризует объект [2]. Проблема описания класса средних 
величин, являющихся ядром процедуры агрегирования, имеет глубокие корни в математике, 
которые в своей работе описывал А. Н. Колмогоров о понятии среднего [3]. Существуют раз-
личные классы операций и функций агрегирования, относящиеся к семейству средних [5], 
каждый из которых реализует определенную стратегию: конъюнктивную (ориентированную 
на наихудшие оценки), дизъюнктивную (ориентированную на наилучшие оценки) и компро-
миссную [2]. Выбор конкретной функции агрегирования является ключевым шагом при по-
строении оценочной системы [4].

Целью данной работы является демонстрация применения одной из наиболее гибких и 
мощных инструментов агрегирования — оператора порядкового взвешенного агрегирования 
(OWA), который применяется для решения практической задачи многокритериального (или 
многоатрибутного) выбора.

1. OWA-оператор и подходы к определению весовых коэффициентов

Особый интерес в семействе базовых классов агрегирования представляет Order Weighted 
Averaging (OWA) оператор, введенный Р. Ягером [7]. Его особенность заключается в том, что 
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перед агрегированием компоненты векторной оценки упорядочиваются по невозрастанию, а 
весовые коэффициенты связываются не с конкретными показателями, а с их порядковыми 
позициями [1]. Это позволяет напрямую управлять стратегией агрегирования, задавая ту или 
иную степень оптимизма/пессимизма ЛПР (лица, принимающего решение), и представляет 
собой развитие идей о специализированных операторах усиления [6].

n-местный OWA-оператор, ассоциированный с вектором 1( ,..., ),nW w w=  где [0,1]iw ∈  и 

1,iw =∑  определяется следующим образом [2]: 
1

( , ) ,
n

i i
i

W X w y
=

Φ =∑  где iy  — i -й по величине 

элемент вектора X  (т. е. 1 2 ... ny y y≥ ≥ ≥ ).
Ключевым этапом в использовании OWA-оператора является определение вектора весов 

,W  который полностью определяет его свойства: стратегию (через показатели orness и andness), 
уровень компенсации и равномерного учета аргументов (через энтропию) [1]. Данный этап 
так же можно рассмотреть, как проблему параметризации функции агрегирования, которая 
рассмотрена в [4, 5].

Общий подход к построению целенаправленной процедуры агрегирования, в рамках ко-
торой формируются обобщенные оценки, включает этап выбора стратегии агрегирования, 
обоснование необходимости учета компенсационных свойств функции или операции агре-
гирования, а также учета того, равномерно ли будут учтены частные оценки объектов. Преи-
муществом OWA-операторов является то, что для оценки перечисленных свойств процедуры 
агрегирования они имеют количественные показатели, которые определяются вектором весо-
вых коэффициентов.

Рассмотрим несколько подходов к определению весовых коэффициентов, которые могут 
быть использованы для целенаправленного построения процедуры агрегирования.

1.1. Метод на основе функции квантификации

Данный подход определять весовые коэффициенты на основе функций квантификации, 
которые формализуют понятие лингвистического квантора («большинство», «по крайней 
мере половина» и т. п.) [1]. Пусть :[0,1] [0,1]Q →  — непрерывная неубывающая функция кван-
тификации, тогда весовые коэффициенты определяются по формуле [1]:

	 1 ,i
i iw Q Q
n n

−   = −   
   

   для 1,..., .i n= .

Например, для степенной функции ( ) , 0,Q x xα α= >  веса рассчитываются как 
1 .i

i iw
n n

α α−   = −   
   

 При 1α =  получается среднее арифметическое (orness = 0.5), при 1α <  — 

оператор будет склонен к конъюнктивной стратегии, при 1α >  — у дизъюнктивной [1].

1.2. Метод на основе производной функции квантификации

Этот подход делает веса зависимыми не только от порядка, но и от значений самих аргу-
ментов, что позволяет получить более адаптивную процедуру агрегирования. Веса рассчиты-
ваются по формуле:

	

1

(1 ) ,
(1 )

i
i n

j
j

Q yw
Q y

=

′ −
=

′ −∑
где Q′  — произвольная функция квантификации ,Q  а iy  — упорядоченные по убыванию зна-
чения аргументов. Таким образом, большой вес получают те упорядоченные аргументы, для 
которых значение производной в точке (1 )iy−  выше.
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1.3. Метод на основе редукции экстремальных значений

Этот подход делает веса зависимыми не только от порядка, но и от значений самих аргу-
ментов, как в предыдущем случае, однако позволяет сосредоточить внимание на «средних» 
оценках [1], не принимая во внимание экстремальные. Задаются два параметра , [0,1],α β ∈  

.α β<  Весовые коэффициенты определяются таким образом, что они игнорируют первые nα  
и последние ( 1)n nβ− +  значений, а внимание акцентируется лишь на тех оценках, которые 
находятся между экстремальными. Данный OWA-оператор называется EVROWA-оператором, 
для которого всегда orness = 0.5 [8], что соответствует сбалансированной, нейтральной страте-
гии, не склонной к оптимизму, ни к пессимизму, и может быть полезен в контексте поиска 
устойчивых решений, менее зависимых от выбросов данных.

Выбор конкретного метода определения весов позволяет гибко настраивать процедуру 
агрегирования в соответствии с семантикой задачи и предпочтениями ЛПР.

2. Пример применения: выбор инвестиционного проекта

В данном разделе приведем практический пример. Рассмотрим задачу выбора наилучшего 
инвестиционного проекта по благоустройству городской территории из 12 предложенных к 
рассмотрению. Каждый проект оценивается по следующим шести показателям: Р1 — стои-
мость реализации (млн руб.); Р2 — срок окупаемости (лет); Р3 — чистый дисконтированный 
доход (млн руб.); Р4 — внутренняя норма доходности (%); Р5 — индекс рентабельности; Р6 — 
уровень риска. Исходная информация о проектах представлена в табл. 1 (проекты закодируем 
буквами алфавита).

Таблица 1
Исходные данные

Проекты P1 P2 P3 P4 P5 P6
A 18 4,5 25 25 1,8 6
B 12 3 22 28 2,1 4
C 8 2 17 22 1,9 2
D 15 4 30 35 2,5 6
E 15 1,8 28 26 2,3 8
F 20 5 35 30 2 3
G 11 2,8 20 27 2,2 5
H 7 1,5 10 20 1,7 1
I 19 3,5 25 32 2,4 7
J 13 3,2 28 29 2,6 4
K 16 4,2 32 33 2,7 6
L 17 3,9 35 38 2,8 3

На основе исходных данных и использования методов, описанных ранее, получим визуа-
лизацию сравнения OWA-оценок по методам расчета весов (рис. 1, 2).

На рис. 2 видно, что в соответствии с различными методами можно получить разные ран-
жирования, что подчеркивает важность выбора весовых коэффициентов для данного семей-
ства операций агрегирования.

Проведя анализ данных и вычислив среднюю обобщенную оценку, можно выделить 3 луч-
ших варианта инвестиционного проекта, из которых ЛПР должен выбрать наиболее подходя-
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щий с учетом дополнительной информации и внешних факторов.  Для этого составим общую 
среднюю OWA-оценку (рис. 3).

В рамках практического примера, получили, что при исходных данных лучшим инвести-
ционным проектом является проект L. Данный проект хорошо сбалансирован высокими по-
казателями ключевых критериев и его оценка является более устойчивой к изменению страте-
гий агрегирования.

Рис. 1. Тепловая карта OWA-оценок

Рис. 2. Динамика изменения рангов
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Заключение

В статье показано, что использование OWA-операторов представляет гибкий и семанти-
чески насыщенный аппарат для построения обобщенных оценок в задачах многокритериаль-
ного (многоатрибутного) выбора. Различные методы определения весовых коэффициентов, 
основанных на функции квантификации, их производных, редукции экстремальных значе-
ний, позволяют целенаправленно формировать стратегию агрегирования, отражающую отно-
шение лица, принимающего решение, к риску и его предпочтения.

Практический пример по выбору инвестиционного проекта показал, что в зависимости 
от выбранной стратегии, наиболее качественные проекты будут лидировать при любом из 
рассмотренных подходов. Это свидетельствует об устойчивости решения. Использование не-
скольких методов расчета весов и последующий сравнительный анализ позволяют принять 
более обоснованное и взвешенное решение.
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УДК 004.896

АНАЛИЗ ИНТЕЛЛЕКТУАЛЬНЫХ ИНСТРУМЕНТОВ 
ДЛЯ 3D КОНСТРУИРОВАНИЯ В АДДИТИВНОМ ПРОИЗВОДСТВЕ

Ярославский государственный технический университет

А. В. Фролов, О. Ю. Марьясин

Аннотация. В работе представлены результаты экспериментального сравнения совре-
менных инструментов на базе искусственного интеллекта для 3D конструирования из-
делий, предназначенных для аддитивного производства. Проведено тестирование пяти 
ИИ-платформ различной архитектуры на трех типах объектов различной геометриче-
ской сложности. Лучшие результаты для простых геометрических форм продемонстри-
ровала платформа Luma AI, для объектов средней сложности — Kandinsky 3D. Для ко-
личественной оценки влияния сложности объектов на качество генерации был введен 
индекс геометрической сложности. Установлена сильная корреляция между индексом 
геометрической сложности объекта и точностью генерации. Разработаны практические 
рекомендации по выбору интеллектуальных инструментов для различных типов проект-
ных задач в аддитивном производстве.
Ключевые слова: аддитивное производство, 3D моделирование, искусственный интел-
лект, генеративные нейронные сети, диффузионные модели, автоматизация проектиро-
вания, индекс геометрической сложности.

Введение

Современное развитие технологий аддитивного производства в сочетании с достижения-
ми в области искусственного интеллекта (ИИ) формирует новую парадигму промышленного 
проектирования. Согласно аналитическим данным, объем мирового рынка 3D-печати достиг 
15,05 млрд долларов в 2024 году, демонстрируя устойчивый рост на 10% в годовом исчислении 
[1]. Российская Федерация, несмотря на текущую долю 2% в мировом рынке аддитивных тех-
нологий, показывает десятикратное увеличение объема рынка за последние восемь лет, что 
свидетельствует о высоком потенциале интеграции ИИ-технологий в отечественные произ-
водственные процессы [2].

Традиционные методы проектирования изделий для аддитивного производства основы-
ваются на использовании систем автоматизированного проектирования (Computer-Aided 
Design — CAD), таких как AutoCAD, SolidWorks, Fusion 360. Однако создание сложных ге-
ометрических форм, оптимизированных под специфику аддитивного производства, требует 
значительных трудозатрат и высокой квалификации специалистов. ИИ-технологии предла-
гают инновационные решения для оптимизации процессов 3D-печати сложных геометрий и 
легких структур [3].

Критический анализ современного состояния отрасли выявляет существенный разрыв 
между теоретическими возможностями ИИ-инструментов для 3D моделирования и их прак-
тической применимостью в реальных инженерных задачах. Большинство публикаций сосре-
доточены на демонстрации технологических возможностей без строгих количественных ме-
трик точности и надежности. Согласно прогнозам экспертов, в течение последующих пяти лет 
AI-генерированные модели способны достичь качества, сопоставимого с созданными челове-
ком, для приблизительно 60 % базовых применений [4]. Однако отсутствие систематических 
экспериментальных исследований препятствует объективной оценке готовности данных тех-
нологий к промышленному внедрению.
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В данной работе представлены результаты экспериментального сравнения современных 
ИИ-инструментов для 3D конструирования изделий, предназначенных для аддитивного про-
изводства.

1. Подготовка и проведение экспериментов

1.1. Выбор экспериментальных объектов

Для обеспечения репрезентативности результатов экспериментов и возможности их экс-
траполяции на широкий спектр промышленных применений были выбраны три типа объек-
тов различной геометрической сложности (рис. 1).

Мяч для гольфа. Простая базовая геометрия типа сферы с регулярной микроструктуриро-
ванной поверхностью (димплы), требующая высокой точности воспроизведения для обеспе-
чения аэродинамических характеристик.

Рама дронов. Пространственная решетчатая структура с тонкостенными элементами, 
множественными пересечениями и крепежными узлами. Высокая топологическая сложность 
с внутренними полостями представляет значительный вызов для ИИ-систем.

Крыльчатка насоса. Аэродинамические профили с лопастями переменного сечения и 
сложной кривизной. Максимальная геометрическая сложность с критическими требования-
ми к точности для обеспечения аэродинамической эффективности.

1.2. Выбор ИИ-инструментов

В данном исследовании использованы пять современных ИИ-платформ различной архи-
тектуры для автоматизации 3D моделирования. Сравнительная характеристика ИИ-инстру-
ментов представлена в табл. 1. 

Model Context Protocol (MCP) обеспечивает стандартизированную интеграцию больших 
языковых моделей с Blender через унифицированный протокол взаимодействия [5]. Система 
позволяет использовать различные базовые большие языковые модели с возможностью ло-
кальной обработки и тонкой настройки.

1.3. Метрики качества

Для объективной оценки качества сгенерированных моделей использована система коли-
чественных метрик на основе сравнительного анализа 3D геометрии.

                   а)                                                              б)                                                                  в)
Рис. 1. Объекты для генерации: а) мяч для гольфа, б) крыльчатка насоса, в) рама дрона
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Таблица 1
Сравнение ИИ-инструментов

Инструмент Архитектура Ключевые преимущества Ссылка на сайт
Kandinsky 3D Diffusion 

Transformers
Хорошее понимание русского 
языка, API, формат .fbx

https://ai-forever.github.io/
Kandinsky-3/

Hunyuan3D 2.0 Flow-based 
diffusion

Open source (Apache 2.0), 500K 
3D объектов обучения

https://www.hunyuan-3d.com/

Meshy AI Закрытая 
архитектура

Высокая скорость генерации, 
форматы .fbx/.obj/.stl /.gltf

https://www.meshy.ai/

Luma AI Genie Neural 
Radiance Fields

Бесплатный доступ, 
креативная генерация

https://lumalabs.ai/

MCP Blender Model Context 
Protocol

Локальная обработка, 
полный контроль, интеграция 
c Blender

https://github.com/
teslaproduuction/GenesisCore

Средняя абсолютная ошибка (MAE): 
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где id  — кратчайшее расстояние от точки i  генерированной модели до поверхности эталон-
ной модели, n  — общее количество точек выборки. Данная метрика обеспечивает оценку ти-
пичной величины отклонения без учета направления.

Среднеквадратическая ошибка (RMSE):
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Стандартное отклонение (σ):
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где d  — среднее арифметическое всех расстояний.

Процентильные характеристики: P50 (медиана) характеризует типичное отклонение, P95 
(95-й процентиль) значение, ниже которого находится 95 % всех измеренных отклонений, P99 
(99-й процентиль) значение, ниже которого находится 99 % всех измеренных отклонений.

1.4. Подготовка эталонных моделей и процедура эксперимента

Эталонные модели получены из коммерческих 3D библиотек, профессиональных CAD-си-
стем (SolidWorks, Fusion 360) и высокоточных 3D сканов с разрешением до 0,1 мм. Все модели 
нормализованы для исключения влияния положения в пространстве. 

Для обеспечения воспроизводимости разработан набор стандартизированных текстовых 
запросов (промптов). Например, базовый промпт для мяча для гольфа: “Professional golf ball 
with dimpled surface, white color, regulation size 42.67 mm diameter, 336 dimples, spherical shape, 
high quality 3D model for manufacturing”. Каждый объект генерировался трижды с идентичны-
ми параметрами для оценки стабильности.
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2. Результаты экспериментального тестирования

2.1. Генерация мяча для гольфа

Результаты генерации мяча для гольфа представлены в табл. 2. Анализ охватывал датасеты 
от 8759 до 1142786 точек для различных ИИ-инструментов.

Таблица 2
Характеристики точности генерации мяча для гольфа (мм)

Инструмент Точек MAE RMSE σ Медиана P95 P99 Max
Luma AI 24586 0,258 0,398 0,318 0,148 0,801 0,933 1,106
Meshy AI 8759 0,268 0,423 0,331 0,193 0,759 0,995 1,386
MCP Blender 1142786 0,278 0,447 0,362 0,165 0,767 0,873 1,007
Hunyuan3D 2.0 321910 0,295 0,463 0,369 0,236 0,762 0,961 1,292
Kandinsky 3D 20002 0,333 0,521 0,423 0,269 0,837 1,015 1,293

Лучшие результаты продемонстрировал Luma AI с наименьшим средним абсолютным от-
клонением 0,258 мм, что на 22,5 % лучше результата Kandinsky 3D (0,333 мм). Kandinsky 3D 
продемонстрировал стабильные результаты с адекватным воспроизведением базовой сфе-
рической формы и корректной интерпретацией промптов на русском языке, но с приблизи-
тельным воспроизведением димплов, с упрощенной геометрией. Hunyuan3D 2.0 продемон-
стрировал высокое качество с детализированной димпловой структурой и с превосходным 
топологическим качеством. Meshy AI показал оптимальный баланс между скоростью и каче-
ством с высокой повторяемостью результатов.

2.2. Генерация рамы дронов

Рама дронов представляет существенно более сложную задачу вследствие множественных 
тонкостенных элементов и требований к топологической корректности. Результаты генера-
ции представлены в табл. 3.

Таблица 3
Характеристики точности генерации рамы дронов (мм)

Инструмент Точек MAE RMSE σ Медиана P95 P99 Max
Kandinsky 3D 19964 0,793 1,267 0,908 0,679 1,867 3,265 4,787
Hunyuan3D 2.0 127038 1,510 3,024 2,556 0,621 7,405 11,622 15,397

Kandinsky 3D продемонстрировал значительно лучшие результаты (MAE = 0,793 мм) по 
сравнению с Hunyuan3D 2.0 (MAE = 1,510 мм). Kandinsky 3D успешно интерпретирует общую 
концепцию рамы квадрокоптера, но упрощает сложные соединительные узлы и создает моно-
литные конструкции. Следует отметить, что Hunyuan3D 2.0 демонстрирует более детализиро-
ванную генерацию сложных элементов конструкции, что приводит к увеличению локальных 
отклонений в областях высокой геометрической сложности. Hunyuan3D 2.0 показывает пре-
восходное качество детализации и лучшее среди тестируемых систем воспроизведение симме-
трии конструкции, но испытывает сложности с внутренними полостями.

2.3. Генерация крыльчатки

Крыльчатка представляют наивысший уровень сложности среди тестируемых объектов вслед-
ствие требований к точности аэродинамических профилей. Результаты представлены в табл. 4.
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Таблица 4
Характеристики точности генерации крыльчатки (мм)

Инструмент Точек MAE RMSE σ Медиана P95 P99 Max
Kandinsky 3D 20000 1,054 1,917 1,617 0,505 3,651 5,607 7,893
Hunyuan3D 2.0 212876 2,095 3,437 2,643 1,718 7,047 7,402 9,127

Генерация крыльчатки выявила ограничения существующих ИИ-технологий — оба ин-
струмента показали значительные отклонения, превышающие типичные производственные 
допуски для аэродинамических поверхностей (±0,1–0,2 мм). Все системы демонстрируют тен-
денцию к упрощению сложных аэродинамических профилей и испытывают сложности в вос-
произведении переменного угла атаки лопастей.

3. Анализ результатов

3.1. Влияние геометрической сложности

Для количественной оценки влияния сложности объектов на качество ИИ-генерации 
авторами, на основе работы [6], был введен индекс геометрической сложности (Geometrical 
Complexity Index — GCI):

	 1 1 2 2 3 3,GCI w m w m w m= + +

где 1
fN

m
A

=  — характеризует степень детализации поверхности, fN  — количество граней, A — 

площадь поверхности, 2
Cm
L

=  — характеризует топологическую сложность, C  — общая дли-

на кромок, L  — характерный размер, 3
c

t

Vm
V

=  — характеризует наличие внутренних полостей 

и отверстий, cV  — объем полостей, tV  — общий объем.
Весовые коэффициенты , 1, ,3iw i =   интерпретируются как доли вклада каждой компо-

ненты в общую сложность объекта:
•  1 0,0002 (0,02 %)w =  — плотность сетки. Современные ИИ-модели эффективно обраба-

тывают детализированные поверхности благодаря работе в латентном пространстве, поэтому 
данный фактор вносит минимальный вклад в сложность.

•  2 0,0028 (0,28 %)w =  — длина кромок. Топологическая сложность влияет на точность 
воспроизведения геометрических переходов, но её вклад также относительно невелик по срав-
нению с полостями.

•  3 0,997 (99,7 %)w =  — доля полостей. Доминирующий фактор сложности. Анализ дефек-
тов показал, что non-manifold геометрия возникает в 78 % случаев при наличии внутренних 
полостей. Внутренние полости требуют понимания объемной структуры, что является фунда-
ментальной проблемой для текущего поколения генеративных моделей.

Соотношение весов: 3 2 1: : 4985 :14 :1w w w =  отражает иерархию сложности, в которой, по 
мнению авторов, внутренние полости примерно в 5000 раз критичнее плотности сетки, а то-
пологическая сложность в 14 раз важнее детализации.

Геометрические параметры эталонных моделей приведены в табл. 5. Значения параметров 
,fN  ,A  C  извлечены из STL-файлов эталонных моделей с использованием библиотеки обра-

ботки 3D данных.
Значения GCI и усредненные, для различных ИИ-инструментов, значения метрик MAE и 

RMSE приведены в табл. 6.
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Таблица 5
Геометрические параметры эталонных моделей

Параметр Мяч для гольфа Рама дрона Крыльчатка
Nf ~20000 ~40000 ~95000
A, см² 60 380 265
C, см 450 2300 2050
L, см 4,27 26 14
Vc, см³ 0 120 88
Vt, см³ 40,6 250 175

Таблица 6
Значения CGI и средние характеристики точности

Объект GCI Средняя MAE, мм Средняя RMSE, мм
Мяч для гольфа 0,37 0,285 0,450
Рама дронов 0,75 1,151 2,146
Крыльчатка 0,99 1,575 2,677

Обнаружена сильная положительная корреляция между индексом геометрической слож-
ности и ошибками генерации: для средней абсолютной ошибки коэффициент корреляции 
Пирсона 0,89r =  2( 0,79,R =  0,01),p <  для среднеквадратичной ошибки 0,94r =  2( 0,89,R =

0,01).p <
На основе экспериментальных данных получены уравнения линейной регрессии:
• Для MAE: 2,08* 0,48;MAE GCI= −
• Для RMSE: 3,58* 0,86.RMSE GCI= −
Графическое представление зависимостей метрик MAE и RMSE от GCI показано на рис. 2.
Установлены следующие пороговые значения GCI для практического применения:
• 0,5 : 0,3GCI MAE< <  мм (высокая точность, рекомендуется для прямого использования 

ИИ-генерации);
• 0,5 0,8 : 0,8 1,2GCI MAE≤ < ≈ −  мм (средняя точность, требуется проверка критических 

размеров);
• 0,8 : 1,5GCI MAE≥ >  мм (низкая точность, необходима CAD-доработка).

                                          а)                                                                                         б)
Рис. 2. Зависимость между индексом геометрической сложности и точностью генерации: 

а) CGI с MAE, б) CGI с RMSE
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Полученные результаты демонстрируют, что нормализованный индекс GCI является эф-
фективным инструментом для априорной оценки применимости ИИ-инструментов к кон-
кретным проектным задачам в аддитивном производстве.

3.2. Стабильность и воспроизводимость результатов

Для оценки стабильности и воспроизводимости результатов использовался коэффициент 
вариации. Коэффициент вариации при повторных генерациях варьировался от 8,9 % (MCP 
Blender для мячей) до 31,2 % (Hunyuan3D 2.0 для крыльчаток). Наименьшую стабильность 
продемонстрировали все системы при генерации крыльчаток, что указывает на сложность 
воспроизведения аэродинамической геометрии.

4. Практические рекомендации

На основе результатов проведенного исследования разработаны рекомендации по приме-
нению ИИ-инструментов для различных типов задач (табл. 7).

Таблица 7
Рекомендуемые ИИ-инструменты по типам задач

Тип задачи Рекомендуемый 
инструмент

GCI Ожидаемая 
точность, мм

Простые геометрические формы Luma AI < 0,5 ±0,25
Технические детали средней сложности Meshy AI 0,5–0,7 ±0,27

Kandinsky 3D 0,5–0,8 ±0,33–0,79
Высокодетализированные модели Hunyuan3D 2.0 0,6–0,8 ±0,30
Критические размеры MCP Blender 0–1 ±0,28

 
Заключение

В результате проведенного экспериментального исследования получены следующие ре-
зультаты:

• Для простых геометрических форм ( 0,5)GCI <  лучшие результаты достигаются при ис-
пользовании Luma AI ( 0,258MAE =  мм) и Meshy AI ( 0,268MAE =  мм). Для объектов средней 
сложности (0,5 0,8)GCI≤ <  оптимален Kandinsky 3D ( 0,793MAE =  мм).

• Установлена сильная корреляция между индексом геометрической сложности и точно-
стью генерации ( 0,89,r =  0,01).p <

• Стабильность генерации варьируется от 8,9 % до 31,2 %, что является приемлемым для 
промышленного применения при соответствующем контроле качества.

• Отечественные ИИ-решения (Kandinsky 3D) демонстрируют приемлемое качество с пре-
имуществами в области информационной безопасности и технологической независимости.

Для промышленного применения рекомендуется гибридный подход — ИИ-генерация ба-
зовой формы с последующей CAD-доработкой. Экспериментально установлена средняя эко-
номия времени 35–40 % при использовании такого подхода по сравнению с традиционным 
проектированием при сохранении требуемого качества. Рекомендуемая постобработка вклю-
чает топологическую очистку, проверку минимальных размеров элементов и оптимизацию 
ориентации для печати.

Результаты исследования могут быть использованы предприятиями при выборе ИИ-ин-
струментов для автоматизации процессов проектирования в аддитивном производстве.
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УДК 004.657

МЕТОДЫ АНАЛИЗА РАБОЧЕЙ НАГРУЗКИ ТАБЛИЦ 
И ИДЕНТИФИКАЦИЯ КАНДИДАТОВ ДЛЯ ПАРТИЦИОНИРОВАНИЯ 

В РАСПРЕДЕЛЕННЫХ РЕЛЯЦИОННЫХ СУБД

Воронежский государственный университет

Ю. А. Фролов, И. Е. Воронина

Аннотация. В условиях роста объемов данных ключевой задачей становится эффектив-
ное управление рабочей нагрузкой в распределенных реляционных СУБД. В работе пред-
ставлены специализированные алгоритмы автоматического идентификации таблиц-кан-
дидатов для партиционирования, образующие основной элемент. Актуальность решения 
подтверждается возможностью существенного повышения производительности обра-
ботки данных через рациональное распределение нагрузки и адаптацию к изменяющим-
ся паттернам доступа.
Ключевые слова: анализ рабочей нагрузки, автоматическое партиционирование, распре-
деленные реляционные СУБД, большие объемы данных, распределение нагрузки, произ-
водительность СУБД.

Введение

Обработка постоянно растущих объемов данных представляет серьезную проблему для 
современных распределенных реляционных систем управления базами данных. Одним из 
наиболее эффективных подходов к повышению производительности таких систем является 
партиционирование таблиц, позволяющее распределять данные между узлами кластера. Од-
нако традиционные методы партиционирования, основанные на ручном проектировании и 
экспертной оценке, оказываются недостаточно эффективными в условиях динамически изме-
няющихся рабочих нагрузок и сложных распределенных архитектур. 

Основной задачей является анализ методов и алгоритмов для автоматического анализа 
рабочей нагрузки и идентификации кандидатов для партиционирования в распределенных 
реляционных СУБД, направленных на повышение эффективности обработки данных за счет 
рационального распределения нагрузки.

Актуальность работы определяется растущей потребностью в разработке автоматизи-
рованных систем партиционирования, способных адаптироваться к изменяющимся паттер-
нам доступа и вариативным нагрузкам в распределенных реляционных СУБД. Практическая 
ценность подтверждается возможностью прямой интеграции алгоритмов в промышленные 
СУБД для построения системы автоматизированного управления данными, которая снижает 
операционные затраты за счет минимизации ручного администрирования и оптимизации ис-
пользования вычислительных мощностей.

1. Анализ существующих решений

В ходе работы был проведен анализ современных распределенных реляционных СУБД и 
расширений для PostgreSQL, а именно CockroachDB, YugabyteDB, TiDB и Citus [1–4].

CockroachDB предоставляет встроенные механизмы партиционирования на основе диапа-
зонов ключей, отслеживание базовых метрик производительности и сбор статистики выпол-
нения запросов. Однако система не реализует интеллектуальную оптимизацию схемы парти-
ционирования и не обеспечивает адаптивности партиций к нагрузкам.
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YugabyteDB предлагает инструменты для настройки партиционирования с поддержкой 
различных стратегий распределения данных и мониторинг производительности. Система об-
ладает возможностями ручной ребалансировки, но не обеспечивает автоматической адапта-
ции партиций к изменяющимся нагрузкам.

TiDB обеспечивает развитые механизмы партиционирования и комплексный анализ вы-
полнения запросов. Система предоставляет элементы интеллектуальной оптимизации, одна-
ко не поддерживает автоматическое изменение схемы партиционирования при изменении 
паттернов доступа, что ограничивает её адаптивность.

Citus реализует партиционирование для PostgreSQL с поддержкой сбора метрик произво-
дительности. Система требует ручного управления партициями и не предоставляет возмож-
ностей автоматической адаптации к изменяющимся рабочим нагрузкам.

На основании анализа можно сделать вывод, что ни одна из рассмотренных систем не 
предлагает комплексного решения для автоматической адаптации схемы партиционирования 
на основе анализа рабочих нагрузок.

В табл. 1 представлены результаты сравнения функциональности существующих распреде-
ленных реляционных СУБД.

Таблица 1
Анализ существующих распределенных реляционных СУБД

Название СУБД Поддержка 
партиционирования

Анализ рабочей 
нагрузки

Интеллектуальная 
оптимизация

Адаптивность 
партиций 

к нагрузкам
CockroachDB + + – –
YugabyteDB + + – –
TiDB + + + –
Citus + + – –

2. Методология анализа рабочей нагрузки

Методология, ориентированная на автоматическое определение кандидатов для партици-
онирования в распределенных реляционных СУБД, включает трехэтапный подход к сбору и 
анализу метрик производительности:

1) Сбор и агрегация метрик — этап, на котором система отслеживает: временные характе-
ристики запросов, частотные метрики, метрики распределения и ресурсные показатели.

2) Анализ и идентификация паттернов — этап, на котором происходит корреляционный 
анализ между метриками, выявление временных паттернов (часовых, дневных, недельных), 
обнаружение узких мест производительности, прогнозирование роста нагрузок на основе 
исторических данных.

3) Принятие решений и рекомендации — этап, на котором система рассчитывает показа-
тель необходимости партиционирования, сравнивает показатели с пороговыми значениями 
для принятия решений, разрабатывает план для бесшовного внедрения партиций [5].

Ключевые метрики для анализа рабочей нагрузки:
1) Метрики производительности запросов:

• время выполнения запросов;
• частота обращений к таблицам;
• количество операций чтения/записи;
• распределение типов запросов (SELECT, UPDATE, INSERT, DELETE).

2) Метрики распределения данных:
• размер таблиц и индексов;
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• распределение данных по узлам кластера;
• коэффициент селективности запросов;
• количество уникальных значений в колонках.

3) Метрики доступа к данным:
• паттерны временных рядов;
• корреляция запросов;
• выявление «горячих» данных;
• частота JOIN-операций между таблицами.

3. Архитектура системы сбора метрик

Система сбора метрик состоит из семи основных компонентов: агент сбора метрик, храни-
лище временных рядов, аналитический движок, модуль принятия решений, распределенная 
реляционная СУБД, база рекомендаций, Apache Kafka (рис. 1).

В архитектуре представлены компоненты:
1. Агент сбора метрик — предназначен для сбора метрик производительности в реальном 

времени.
2. Хранилище временных рядов — отвечает за долгосрочное хранение и агрегацию исто-

рических данных [6].
3. Аналитический движок — отвечает за обработку и анализ собранных метрик.
4. Модуль принятия решений — формирует интеллектуальные рекомендаций по партици-

онированию.
5. Распределенная реляционная СУБД — целевая система по оптимизации партициониро-

вания.
6. База рекомендаций — требуется для хранения и управления сгенерированными реко-

мендациями.
7. Apache Kafka — обеспечивает надежную асинхронную передачу потоковых данных.

Рис. 1. Архитектура системы сбора метрик
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4. Алгоритм идентификации кандидатов для партиционирования

Выведен алгоритм автоматического выявления таблиц для партиционирования, основан-
ный на многокритериальном анализе производительности. 

Многоуровневая система оценки включает анализ эффективности выполнения запросов, 
оценку характеристик распределения данных и изучение паттернов доступа. Для каждого на-
правления рассчитываются специализированные метрики с адаптивными весовыми коэффи-
циентами, которые автоматически настраиваются под специфику рабочей нагрузки и особен-
ности конкретной распределенной СУБД [7].

Все таблицы автоматически распределяются по четырем категориям приоритета на основе 
анализа таких параметров, как частота обращений, равномерность распределения данных и 
объем хранимой информации.

Автоматический выбор стратегии партиционирования выполняется для таблиц с высо-
ким и средним приоритетом. Система анализирует структуру данных, шаблоны запросов и 
особенности распределения нагрузки, чтобы рекомендовать оптимальный тип партициони-
рования: диапазонное для временных данных, хэш-распределение для равномерной нагрузки 
и списочное для категориальной информации.

Адаптивный механизм обеспечивает постоянную оптимизацию процесса принятия реше-
ний. Система непрерывно оценивает эффективность реализованных изменений, сравнивая 
метрики производительности до и после партиционирования, и корректирует пороговые зна-
чения и весовые коэффициенты для улучшения точности будущих рекомендаций.

Заключение

Проведенный анализ подтвердил актуальность разработки алгоритма для автоматического 
партиционирования в распределенных реляционных СУБД. Анализ существующих решений 
показал, что современные системы, включая CockroachDB, YugabyteDB, TiDB и Citus, не обе-
спечивают автоматизацию процесса партиционирования на основе анализа рабочих нагрузок.

В работе предложена методология анализа рабочей нагрузки, включающая трехэтапный 
подход: сбор и агрегацию метрик, идентификацию паттернов и принятие решений. Спроек-
тирована архитектура системы сбора метрик, состоящая из семи взаимосвязанных компонен-
тов, обеспечивающих непрерывный мониторинг производительности и формирование реко-
мендаций.

Ключевым результатом работы является вывод алгоритмов идентификации кандидатов 
для партиционирования, основанных на многокритериальной оценке таблиц. Предложенная 
система автоматически анализирует метрики производительности запросов, распределения 
данных и паттернов доступа, классифицирует таблицы по приоритетам и определяет опти-
мальную стратегию партиционирования.
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УДК 004.93

АНАЛИЗ И СРАВНЕНИЕ СОВРЕМЕННЫХ НЕЙРОСЕТЕВЫХ МОДЕЛЕЙ 
ДЛЯ ДЕТЕКЦИИ ТРАНСПОРТНЫХ СРЕДСТВ

Казанский национальный исследовательский технический университет им. А.Н. Туполева – КАИ

А. В. Холкин

Аннотация. Настоящая работа посвящена сопоставительному анализу современных де-
текторов объектов, применимых для задачи детекции транспортных средств в видеопо-
токах городских камер. Рассматриваются архитектуры RT-DETR, D-FINE-X и YOLOv10. 
Сформирована единая методика оценки, включающая метрики точности mAP, задержку 
вывода и показатели вычислительных ресурсов, а также проведён натурный эксперимент 
на часовой видеозаписи городского перекрёстка. По совокупности метрик наилучший 
практический баланс для многопоточной обработки видеопотоков показали варианты 
YOLOv10-s и YOLOv10-m. Результаты и рекомендации могут быть использованы при 
проектировании муниципальных систем мониторинга дорожной обстановки.
Ключевые слова: детектирование объектов, транспортные средства, RT-DETR, D-FINE-X, 
YOLOv10, интеллектуальные транспортные системы, ИТС, городской видеопоток.

Введение

В последние годы городские ИТС (интеллектуальные транспортные системы) эволюцио-
нируют от ретроспективного анализа к оперативному мониторингу дорожной обстановки. 
Центральным компонентом таких систем является модуль детекции транспортных средств, 
определяющий границы и классы объектов на кадрах видеопотока. В литературе представлено 
свыше двухсот архитектур детекции/сегментации, причём наиболее результативные направ-
ления развивают идеи семейства DETR и линий YOLO, ориентируясь на лучшее соотношение 
«точность-скорость» и отказ от подавления немаксимумов на этапе вывода. 

Цель настоящей статьи — провести целостное сравнение трёх современных подходов к 
детекции транспортных средств (RT-DETR, D-FINE-X и YOLOv10) на основании единых ме-
трик и экспериментальных условий, выявить сильные и слабые стороны и сформулировать 
практические рекомендации для развертывания в городских ИТС.

1. Модели и их архитектурные особенности

Согласно работам [1] и [2], существует более 200 различных архитектурных подходов в об-
ласти глубокого обучения, направленных на решение задач детекции и сегментации объектов. 
Наиболее эффективные из них развивают изначальные архитектурные принципы, заложен-
ные первыми версиями моделей DETR и YOLOv1. К таким относятся RT-DETR, D-FINE-X и 
YOLOv10, которые и будут рассмотрены в данной работе.

RT-DETR. Эта модификация семейства DETR нацелена на работу в реальном времени. Ар-
хитектура использует гибридный блок кодирования признаков: объединяются как взаимодей-
ствия внутри одного масштаба, так и слияние признаков между масштабами [3]. Для запуска 
блока декодирования применяется отбор запросов с минимальной неопределённостью, что 
улучшает начальную инициализацию. Существенная особенность — «сквозная» постановка 
обучения и вывода, позволяющая обходиться без этапа подавления немаксимумов. Тем самым 
модель выдаёт конечный набор рамок и классов без дополнительной постобработки [4]. 

D-FINE-X. В этой линии регрессия ограничивающих рамок формулируется в вероятност-
ной форме: для каждого края рамки поддерживается распределение, которое поэтапно уточ-
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няется слоями декодирования (детализированное уточнение распределений). Чтобы ранние 
слои получали максимально корректный сигнал о положении объекта, используется самоди-
стилляция, ориентированная на глобально оптимальную локализацию. В результате снижа-
ются ошибки позиционирования при умеренной вычислительной нагрузке [5]. 

YOLOv10. Ключевая идея — согласованное «двойное сопоставление» на разных стадиях: 
при обучении используется схема «один-ко-многим», а при выводе — «один-к-одному» [6]. 
Это делает возможным отказ от подавления немаксимумов без потери устойчивости предска-
заний. Дополнительно применены облегчённый выходной блок классификации, раздельное 
уменьшение разрешения по пространственным и канальным направлениям, а также ранжи-
рованное проектирование вычислительных блоков. В старших вариантах модели используют-
ся свёртки с большим ядром и частичное самовнимание для расширения поля восприятия при 
контролируемой цене вычислений [7].

2. Методика сравнения

Оценка точности детекторов объектов осуществляется с использованием различных ме-
трик. В рамках данной работы для сопоставления базовой точности использовались отчёт-
ные значения mAP на наборе данных COCO, где mAP — это среднее по классам значение AP 
(Average Precision — средняя точность, равная площади под кривой «точность–полнота»), 
усреднённое по порогам коэффициента пересечения-на-объединение (IoU) от 0,50 до 0,95 с 
шагом 0,05 [8]. Параллельно оценивалась задержка вывода (мс).

Для практической оценки проведён прогон часовых фрагментов видеозаписей городского 
перекрёстка в условиях недостаточной освещённости и средней загруженности, с измерением 
FPS, использования памяти/ядра графической карты (GPU) и загрузки центрального процес-
сора (CPU).

Сопоставление выполнялось на рабочей станции с CPU Intel Core i5-13500 и GPU NVIDIA 
RTX 4070 Ti 12 ГБ; конфигурации моделей выбирались в стандартных вариантах (от n до x/l 
для YOLOv10; от n до l для D-FINE; RT-DETR-R50). 

3. Результаты
3.1. Сравнение точностей детекторов

Табл. 1 демонстрирует сравнительную оценку производительности популярных моделей 
детекторов на наборе данных COCO [2–7].

Таблица 1
Результаты оценки точности моделей

Модель Параметры (М) FLOPs (G) mAP (IoU = 50-95) Задержка (latency), мс
D-FIME-n 4,0 7,0 42,8 2,12
D-FINE-s 10,0 25,0 48,5 3,49
D-FINE-m 19,0 57,0 52,3 5,62
D-FINE-l 31,0 91,0 54,0 8,07
RT-DERT-R50 42,0 136,0 53,1 9,2
YOLOv10-n 2,3 6,7 39,5 1,84
YOLOv10-s 7,2 21,6 46,8 2,49
YOLOv10-m 15,4 59,1 51,3 4,74
YOLOv10-l 24,4 120,3 53,4 7,28
YOLOv10-x 29,5 160,4 54,4 10,7
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Для городских систем, работающих в реальном времени, важно выбрать модель, которая 
балансирует между точностью, задержкой и вычислительной нагрузкой. Модели с высокой 
точностью, такие как D-FINE-l (54,0 % mAP) и YOLOv10-x (54,4 % mAP), обеспечивают луч-
шие результаты, но имеют большую задержку и требуют больше вычислительных ресурсов. 
Для минимизации задержки и быстрого реагирования лучше подходят модели, как D-FINE-n 
(2,12 мс) и YOLOv10-n (1,84 мс), которые при этом показывают немного меньшую точность. 
Примеры работы детекторов показан на рис. 1.

а) б)

в)
Рис. 1. Примеры работы детекторов: а) D-FINE-l, б) RT-DERT-R50 в) YOLOv10-l

Для дальнейшего использования выбранной модели для параллельной обработки кадров 
множества видеопотоков также важны требования к вычислительным ресурсам, используе-
мым при анализе изображений. 

3.2. Сравнение производительностей детекторов

Для сравнения требований каждой модели к вычислительным ресурсам проведем тести-
рование каждого решения из списка на часовых фрагментах видеозаписей с городской ка-
меры, установленной на перекрестке в условиях плохой освещенности и среднем количестве 
транспортных средств. Оценка происходит по средним количеству кадров в секунду (FPS), 
показателям потреблениям ресурсов графического (GPU) и центрального (CPU) процессоров. 
Результаты тестирования представлены в табл. 2.

С учетом результатов тестирования для использования в рамках городских ИТС с возмож-
ностью масштабирования на множество параллельно обрабатываемых видеопотоков опти-
мальными являются модели с высокой производительностью (FPS) и умеренным потребле-
нием ресурсов. Модели YOLOv10-s и YOLOv10-m демонстрируют наилучший баланс между 
высокой частотой кадров (28,0 FPS и 29,6 FPS соответственно) и сравнительно низким потре-
блением GPU памяти (650,07 Мб и 763,71 Мб), что делает их предпочтительными для исполь-
зования в системах с ограниченными вычислительными мощностями и для масштабирова-
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ния на несколько видеопотоков. Несмотря на меньшие требования к GPU и CPU YOLOv10-n 
демонстрирует значительно более низкую точность в сравнении с старшими моделями. В то 
же время, модели D-FIME-n и RT-DERT-R50 показывают хорошие результаты по FPS, но их 
потребление памяти и CPU может ограничить масштабируемость на большем числе потоков. 

Заключение

Сопоставительный анализ RT-DETR, D-FINE-X и YOLOv10 показал, что в задаче детекции 
транспортных средств для городских ИТС наилучший компромисс «точность-скорость-ре-
сурсы» демонстрируют YOLOv10-s/m: они сохраняют близкую к старшим моделям точность 
при существенно меньших издержках и позволяют масштабировать систему на множество 
видеопотоков. При необходимости предельной точности можно выбирать YOLOv10-l/x или 
D-FINE-l, однако это повышает требования к оборудованию. Полученные рекомендации обе-
спечивают практическую основу для развёртывания муниципальных систем мониторинга ин-
цидентов на дорогах.
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ПРОСТРАНСТВЕННО-ВРЕМЕННОЕ ВОССТАНОВЛЕНИЕ МЕТЕОРОЛОГИЧЕСКИХ 
ДАННЫХ НА ОСНОВЕ МОДИФИЦИРОВАННОЙ АРХИТЕКТУРЫ SAITS 

С МЕХАНИЗМОМ МЕЖСТАНЦИОННОГО ВНИМАНИЯ

Воронежский государственный университет

А. Д. Худобин, И. Е. Воронина

Аннотация. Рассматривается метод восстановления пропущенных значений в данных 
метеорологических наблюдений, основанный на расширении архитектуры SAITS (Self-
Attention-based Imputation for Time Series). Предложенные модификации включают ме-
ханизм межстанционного внимания для явного моделирования пространственных за-
висимостей между станциями и систему ближайших соседей для включения локальной 
пространственной информации. В отличие от базового SAITS, который разработан для 
одиночных многомерных временных рядов, модифицированная архитектура разработа-
на для явно структурированных групп станций.
Ключевые слова: метеорология, восстановление пропущенных значений, SAITS, Time 
Series, Transformer, Self-Attention, Cross-Attention, DMSA, GRIN, RNN.

Введение

Метеорологические наблюдения составляют основу современных систем прогнозирова-
ния погоды, климатического моделирования и мониторинга окружающей среды. Но данные 
метеостанций неизбежно содержат пропуски, которые возникают вследствие технических 
неисправностей оборудования, неблагоприятных погодных условий, сбоев в системах связи, 
планового технического обслуживания. Некоторые параметры могут иметь более 50 % пропу-
сков, что сильно снижает ценность данных для последующего анализа и моделирования.

Традиционные статистические методы восстановления пропущенных значений (линей-
ная интерполяция, метод ближайшего соседа, заполнение средними значениями, кригинг, 
многомерное восстановление данных цепными уравнениями) демонстрируют ограниченную 
эффективность при работе с метеорологическими данными. Эти методы либо неспособны 
моделировать сложные временные зависимости, либо вычислительно неэффективны для 
крупномасштабных сетей с длительными временными рядами. Кроме того, большинство тра-
диционных подходов либо не учитывают пространственную структуру, либо рассматривают 
пространственные и временные зависимости раздельно, что не отражает природу атмосфер-
ных процессов, характеризующихся тесной пространственно-временной связностью.

В последние годы методы глубокого обучения показали заметные результаты в задачах 
анализа временных рядов. Рекуррентные нейронные сети (RNN) особенно их модификации 
LSTM и GRU, могут моделировать долгосрочные зависимости во временных данных. Архи-
тектуры, которые основаны на механизме самовнимания, в частности Transformer, эффек-
тивно моделируют долгосрочные зависимости за счет способности механизма самовнимания 
напрямую связывать любые элементы последовательности. Архитектура SAITS представляет 
современный подход к восстановлению пропущенных данных во временных рядах. SAITS ис-
пользует двухветвевую структуру с механизмом самовнимания для высокоточного восстанов-
ления пропущенных значений на основе временного контекста.

Однако базовая архитектура SAITS создана для обработки одиночных многомерных рядов 
и не содержит механизмов для эффективного использования пространственной структуры 
сети метеорологических станций. Метеорологические данные характеризуются сильной про-
странственной зависимостью: атмосферные явления одновременно охватывают множество 



453

станций, создавая зависимости, которые можно использовать для восстановления данных. 
Применения базового SAITS к многостанционным данным либо игнорирует эту простран-
ственную информацию при независимой обработке станций, либо требует объединения дан-
ных всех станций в один вектор признаков огромной размерности, это практически неосуще-
ствимо вычислительно и смешивает пространственные и временные зависимости в едином 
механизме самовнимания.

1. Обзор литературы

Архитектура SAITS, предложенная в 2023 году, основана на применении двухветвевой 
структуры трансформера для восстановления данных временных рядов. Первая ветвь исполь-
зует диагональное маскирование в механизме самовнимания, что заставляет модель извлекать 
временные паттерны из контекста, исключая возможность тривиального копирования вход-
ных значений. Вторая ветвь получает комбинацию реальных наблюдений и предсказаний пер-
вой ветви, обеспечивая механизм уточнения результатов. Выходы обеих ветвей объединяются 
через обучаемую сеть взвешивания, динамически определяющую оптимальное соотношение 
предсказаний для каждого признака. Диагональное маскирование в механизме самовнимания 
предотвращает использование информации из той же временной позиции, стимулируя мо-
дель к обучению истинных временных зависимостей [1–2].

Исследования в области пространственно-временного моделирования предлагают раз-
личные подходы к совместному учету пространственной и временной структуры. Графовые 
нейронные сети явно моделируют топологию сети через графовое представление, приме-
няя операции агрегации по ребрам графа для распространения информации между узлами. 
Сверточные рекуррентные архитектуры комбинируют сверточные операции для обработки 
локальных пространственных зависимостей с рекуррентными механизмами для моделирова-
ния временной эволюции. Однако эти подходы либо ограничены необходимостью предвари-
тельно заданной пространственной структуры (регулярной решетки или графа), либо имеют 
ограничения последовательной рекуррентной обработки, включая проблемы с градиентами и 
невозможность эффективной параллелизации.

Методы пространственно-временного восстановления данных для сенсорных сетей, такие 
как GRIN, используют графовые нейронные сети для явного моделирования пространствен-
ных связей между узлами сети. Однако эти методы основаны на рекуррентных архитектурах, 
что ограничивает их применимость к длинным временным последовательностям, характер-
ным для метеорологических наблюдений. Существующие подходы либо полагаются на фик-
сированную предопределенную структуру пространственных связей, либо пытаются обучить 
эту структуру из данных, игнорируя доступную географическую информацию о расположе-
нии станций [3].

Ключевой нерешенной проблемой остается эффективное комбинирование преимуществ 
трансформерных архитектур для временного моделирования с явным учетом пространствен-
ной структуры сети станций при сохранении вычислительной эффективности и физической 
интерпретируемости результатов.

2. Постановка задачи

Рассмотрим сеть из N метеорологических станций с известными географическими коор-
динатами. Каждая станция имеет F параметров с равномерным временным шагом на про-
тяжении T временных отсчетов. Данные представлены трехмерным тензором наблюдений и 
соответствующей булевой маской, указывающей наличие или отсутствие измерения в каждой 
пространственно-временной точке. Задача заключается в восстановлении отсутствующих 
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значений для всех позиций с нулевой маской так, чтобы восстановленные данные минимизи-
ровали ошибку на известных наблюдениях и сохраняли физическую правдоподобность, вклю-
чая пространственную связь между соседними станциями и временную гладкость.

Метеорологические данные характеризуются разнообразной пространственной структурой 
корреляций. На локальном масштабе в десятки километров наблюдается высокая корреляция, 
на региональном масштабе в сотни километров корреляция остается умеренной, а на дальних 
расстояниях (больше пятисот километров) корреляция становится слабой, потому что станции 
попадают под влияние различных синоптических режимов. Эта разнообразная пространствен-
ная структура должна учитываться при проектировании системы восстановления данных.

3. Реализация

3.1. Стратегия региональных моделей

Для обеспечения вычислительной эффективности и учета разнообразной пространствен-
ной структуры корреляций сеть станций разбивается на географически компактные регио-
нальные кластеры. Разбиение выполняется через пространственную сортировку станций ме-
тодом построения цепочки ближайших соседей с последующим разделением упорядоченного 
списка на группы с ограничением максимального количества станций в них. Алгоритм сорти-
ровки начинается с выбора начальной точки и итеративно добавляет ближайшую непосещен-
ную станцию к текущему концу цепочки. Это обеспечивает формирование последовательно-
сти станций с минимальными пространственными скачками между соседними элементами. 
Кроме ограничения на максимальное количество станций в кластере есть ограничение на мак-
симальное общее внутрикластерное расстояние.

Стратегия региональных моделей является решением, которое обеспечивает практиче-
скую применимость подхода к крупномасштабным сетям. Ключевые методологические инно-
вации, описываемые далее, относятся к архитектуре модели, применяемой внутри каждого 
регионального кластера.

3.2. Механизм межстанционного внимания

Центральной инновацией предложенной архитектуры является введение механизма меж-
станционного внимания, работающего ортогонально временному самовниманию базовой ар-
хитектуры SAITS. В отличие от базовой SAITS, обрабатывающей данные в формате одиночной 
многомерной временной последовательности признаков, модифицированная архитектура ра-
ботает с явно структурированными группами станций. Данные организованы в виде четы-
рехмерного тензора, где измерения соответствуют обучающим примерам, времени, станциям 
и признакам.

Для каждой целевой станции, требующей восстановления данных, формируется группа, 
включающая саму станцию и несколько ближайших соседей из этого кластера. После преобра-
зования входных данных в пространство скрытых представлений модели к ним применяется 
последовательность блоков межстанционного внимания.

Архитектура блока следует современным практикам проектирования трансформеров с 
предварительной нормализацией и остаточными связями [1]. После операции внимания меж-
ду станциями идет позиционная нейронная сеть прямого распространения с промежуточным 
расширением размерности и нелинейной активацией. Обе операции окружены остаточными 
связями и нормализацией, обеспечивая стабильность обучения глубоких сетей. Маска запол-
нения станций гарантирует корректную обработку случаев, когда реальное количество сосе-
дей меньше максимального размера группы.
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Физическая интерпретация весов межстанционного внимания: они отражают степень вли-
яния одной станции на другую в данный момент времени для всей совокупности параметров.

3.3. Система географических соседей

Параллельно с механизмом межстанционного внимания в архитектуру включена система 
явного учета географических соседей. Для каждой целевой станции определяется фиксирован-
ное множество ближайших соседей с максимальным фиксированным расстоянием до целевой 
станции. Количество соседей выбирается достаточно малым для вычислительной эффектив-
ности, но достаточно большим для корректного представления локального пространственно-
го контекста.

Информация о системе соседей передаётся в модель несколькими способами:
1. Добавление данных соседних станций к входному представлению явным образом. По-

зволяет модели непосредственно наблюдать текущие значения параметров на окружающих 
станциях.

2. Вычисление нормализованных весов обратного расстояния для каждого соседа. Исполь-
зуются для формирования пространственного кодирования.

3. Преобразование этих весов и расстояний в дополнительные скалярные признаки, добав-
ляемые к входному представлению каждой станции.

Ключевое различие между системой соседей и механизмом межстанционного внимания 
заключается в природе связей. Система соседей определяет жесткую структуру, в которой ге-
ографически близкие станции должны иметь схожие метеорологические условия. Механизм 
внимания обучает мягкие адаптивные веса на основе паттернов данных, которые могут от-
клоняться от простых правил расстояния в зависимости от конкретных метеорологических 
условий. Синергия жестких географических ограничений и обучаемых весов обеспечивает 
быструю сходимость и физическую правдоподобность результатов.

Заключение

Система пространственно-временного восстановления метеорологических данных суще-
ственно расширяет возможности базовой архитектуры SAITS за счет введения явного моде-
лирования пространственной структуры сети станций. Ключевые инновации включают меха-
низм межстанционного внимания для обучения адаптивных пространственных зависимостей 
между станциями, систему географических ближайших соседей для включения физически 
обоснованных пространственных предположений и стратегию региональных моделей для 
обеспечения вычислительной эффективности и климатической специализации при работе с 
крупномасштабными сетями.

Фундаментальное преимущество предложенного подхода заключается в ортогональном 
разделении пространственного и временного моделирования. Механизм межстанционного 
внимания работает по пространственному измерению на каждом временном шаге, обучая 
веса взаимного влияния станций друг на друга. Механизм временного самовнимания из ба-
зовой архитектуры SAITS фокусируется на временной эволюции, не смешиваясь с простран-
ственными паттернами.

Синергия жестких географических ограничений через систему ближайших соседей и об-
учаемых мягких весов через механизм внимания критически важна. Географические соседи 
предоставляют предположение о локальности корреляций, ограничивающее пространство 
поиска и предотвращающее переобучение. Механизм внимания обучает оптимальные веса 
внутри этого пространства, адаптируясь к специфике паттернов данных и метеорологических 
условий. Экспериментальные результаты демонстрируют, что исключение любого из этих 
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компонентов приводит к существенному ухудшению качества, это подтверждает их взаимо-
дополняемость.

Стратегия разбиения на региональные модели решает проблему масштабируемости к 
крупным сетям и улучшает результаты через специализацию моделей под климатические осо-
бенности различных регионов.

Предложенная система готова к практическому применению в операционных системах 
контроля качества метеорологических данных, предобработке для численных моделей про-
гноза погоды и климатических исследованиях. Модульная архитектура обеспечивает высо-
кую расширяемость. Поэтому модель может адаптироваться к другим типам пространствен-
но-временных данных сенсорных сетей. Перспективные направления развития включают 
иерархическое межкластерное внимание для граничных станций и улучшение автоматическо-
го разбиения на кластеры.

Литература

1. Du W. SAITS: Self-Attention-Based Imputation for Time Series / W. Du, D. Côté, Y. Liu // Expert 
Systems with Applications. – 2023. – 22 c.

2. Tashiro Y. CSDI Conditional Score-based Diffusion Models for Probabilistic Time Series 
Imputation / Y. Tashiro [и др.] // Advances in Neural Information Processing Systems. – 2021. – 30 с.

3. Cini A. Filling the G_ap_s: Multivariate Time Series Impputation by Graph Neural Networks / 
A. Cini, I. Marisca, C. Alippi // International Conference on Learning Representations. – 2022. – 20 c.



457

УДК 004.932

ПОДХОДЫ К ИНТЕРПРЕТАЦИИ РЕЗУЛЬТАТОВ 
ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

1Воронежский государственный университет
2Тамбовский филиал Межотраслевого научно-технического комплекса «Микрохирургия глаза» 

имени академика С. Н. Федорова

А. А. Худяков1, А. А. Арзамасцев1, 2

Аннотация. Данная статья представляет собой обзор существующих подходов и ин-
струментов для интерпретации процесса принятия решений в нейросетевых моделях. 
Обсуждается проблема «черного ящика» и важность интерпретации результатов работы 
моделей в медицине и других областях, где от принятого решения зависит здоровье и 
жизнь человека. Рассматриваются основные подходы к повышению интерпретируемости 
сверточных нейронных сетей — Grad-CAM и его вариации, модели со встроенной интер-
претируемостью и на основе прототипов, гибридные методы.
Ключевые слова: искусственный интеллект, нейронные сети, сверточные нейронные 
сети, компьютерное зрение, офтальмология.

Введение

Офтальмология является одной из областей медицины, где методы глубокого обучения 
получили особенно широкое распространение. Сверточные нейронные сети (СНС), а также 
модели на основе трансформеров, при наличии достаточного объема данных для обучения, 
могут использоваться для решения задач классификации и постановки диагноза по изображе-
ниям с различных медицинских приборов, достигая высокого показателя точности и упрощая 
работу врачей-офтальмологов.

Однако, несмотря на высокое качество результатов, достаточное для возможности при-
менять такие модели на практике, большинство нейросетевых моделей представляют собой 
«черные ящики», ценность которых заключается лишь в конечных предсказаниях без возмож-
ности детальнее изучить процесс принятия решения внутри модели и сделать выводы о том, 
какие фрагменты исходных данных внесли в данное решение наибольший вклад. Если для 
других сфер применения алгоритмов машинного обучения эта особенность не столь суще-
ственна, то для медицины она наиболее критична — врачу и пациенту важно понимать, по-
чему модель приняла то или иное решение и можно ли ему довериться, особенно когда речь 
идёт о жизни человека, необходимости назначить опасное или дорогостоящее лечение или в 
условиях ограниченного времени.

Стоит отметить, что некоторые алгоритмы, такие как линейная регрессия или деревья при-
нятия решений, изначально являются хорошо интерпретируемыми, однако, они не представ-
ляют для нас особого интереса, так как либо не могут быть использованы для анализа изобра-
жений, либо показывают неудовлетворительные результаты.

Объяснимый искусственный интеллект (XAI) — это область изучения и создания мето-
дов, инструментов и подходов, которые стремятся сделать современные модели машинного 
обучения более интерпретируемыми и понятными для людей, что в свою очередь повышает 
степень доверия к результатам данных моделей и возможности их практического применения. 
Такие инструменты позволяют визуализировать внутренние механизмы модели, анализиро-
вать вклад отдельных признаков входных данных в итоговое решение, чем также помогают 
выявлять и устранять ошибки и неточности в реализации алгоритмов и улучшать их. В дан-
ной статье рассмотрены некоторые из современных подходов повышения интерпретируемо-
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сти нейросетевых моделей, которые могут использоваться в задачах классификации офталь-
мологических изображений.

1. Grad-CAM

Grad-CAM [1] (Gradient-weighted Class Activation Mapping) — один из наиболее широко 
используемых методов интерпретации СНС в компьютерном зрении, позволяющий локали-
зовать конкретные области изображения, которые внесли наибольший вклад в итоговое ре-
шение модели.

Сверточные слои в СНС сохраняют пространственную структуру изображения, а это зна-
чит, что градиенты последних полносвязных слоев модели относительно последних сверточ-
ных слоев показывают не просто важность абстрактных признаков, которые модель выделила 
в исходных данных, а важность конкретных фрагментов изображения, что можно использо-
вать для создания тепловой карты.

На рис. 1 показана визуализация [2] работы метода Grad-CAM на примере изображений 
сетчатки для автоматического выявления и классификации различной степени диабетической 
ретинопатии. Используя градиенты относительно каналов последнего сверточного слоя, была 
создана тепловая карта, которая затем интерполируется и накладывается на исходное изобра-
жение.

Основным преимуществом метода является его простая интеграция в уже существующие 
и обученные СНС – он не требует изменения архитектуры или переобучения модели.

Из недостатков данного метода можно выделить зависимость от размерности карты при-
знаков в последних сверточных слоях, что непосредственно влияет на размер и простран-
ственную точность полученной тепловой карты, а также проблему однозначного определе-
ния на что именно модель обратила своё внимание в случае наличия в подсвеченном регионе 
большого количества мелких деталей. Различные вариации и улучшения метода, такие как 
Guided Grad-CAM [3], позволяют получить более детализированные тепловые карты, а подход 
SmoothGrad [4] позволяет уменьшить шум за счет усреднения сразу нескольких карт, постро-
енных на специально зашумленных версиях входных данных.

Рис. 1. Работа метода Grad-CAM на примере изображений сетчатки
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2. Модели со встроенной интерпретируемостью

Данная группа методов повышения интерпретации модели предполагает изначальное по-
строение архитектуры с целью получения высокой объяснимости результатов. Уже упомяну-
тые ранее деревья принятия решений и линейная регрессия являются хорошими примерами, 
однако их выразительность и возможность решать сложные задачи, особенно задачи компью-
терного зрения, сильно ограничена.

ProtoPNet [5] (Prototype Network for Interpretable Image Classification) — яркий представи-
тель семейства моделей, изначально построенных с целью повышения интерпретируемости ре-
зультатов. Классические СНС состоят из нескольких сверточных блоков в начале, выделяющих 
из изображения определенные признаки, и полносвязных слоев в конце. Однако определить, 
что означает и за что отвечает каждый выделенный признак, в классических СНС достаточно 
сложно. ProtoPNet добавляет еще один тип слоя — слой прототипов. Каждый прототип — век-
тор в пространстве признаков, выделенных ранее в сверточных слоях, где каждому признаку 
ставится в соответствие некоторый коэффициент. После обучения модели каждому прототи-
пу ставится в соответствие ближайший к нему по метрике L2 фрагмент одного из изображе-
ний в обучающем наборе. Тогда можно сказать, что каждый прототип — это не просто набор 
чисел, а буквально область в одном из изображений обучающего набора. При принятии реше-
ния модель проверяет поступаемое на вход изображение на соответствие каждому прототипу, 
и такое решение можно довольно легко интерпретировать — модель сделала определенный 
выбор, так как нашла в исходном изображении фрагменты, имеющие визуальное сходство 
и пространственную локальность с соответствующими фрагментами из изображений обуча-
ющего набора, для которых было сделано такое же решение, например — поставлен такой 
же диагноз, так как определенная область содержит некое затемнение, и похожие затемнения 
встречались в изображениях обучающего набора с таким же диагнозом. 

Принцип работы ProtoPNet для диагностики легочной пневмонии [6] показан на рис. 2.

Рис. 2. Работа метода ProtoPNet на примере изображений грудной клетки
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3. Гибридные методы

Использование специальных архитектур для улучшения интерпретируемости модели эф-
фективно, но накладывает ограничения на возможности развития и изменения моделей для 
повышения точности, что обычно предпочтительнее — если хорошо интерпретируемая мо-
дель намного больше ошибается по сравнению более точным «черным ящиком», в её исполь-
зовании нет никакого практического смысла.

Гибридные методы предполагают совместное использование двух типов моделей одно-
временно — высокоточной классической СНС (или, например, модели на основе визуальных 
трансформеров (ViT)) и простой, но интерпретируемой и объяснимой модели, обученной ап-
проксимировать поведение более сложной. Таким образом, вторая модель не заменяет пер-
вую, а служит инструментом для анализа её решений. 

Примером такого метода может служить LIME [7] (Local Interpretable Model-Agnostic 
Explanations). Для каждого поступаемого на вход основной сети изображения создается не-
сколько модификаций, которые также подаются на вход основной сети. По полученным от-
ветам строится более простая модель (линейная регрессия или дерево принятия решений), 
которая позволяет понять, какие именно фрагменты (суперпиксели) в исходном изображении 
повлияли на полученный результат.

Заключение

Интерпретация результатов работы искусственных нейронных сетей — важная задача, ко-
торая позволяет повысить доверие человека к сделанным алгоритмами выводам. Она особен-
но важна в таких областях, как медицина, где от принятого решения может зависеть судьба 
человеческой жизни. Помимо постановки диагноза, интерпретация может также использо-
ваться для обучения персонала и автоматического создания и разметки сопутствующих на-
боров данных для обучения других алгоритмов машинного обучения. Современные подходы 
к повышению объяснимости нейронных сетей позволяют расширить сферу их применения и 
упростить внедрение моделей в нашу повседневную жизнь.
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Аннотация. Целью исследования является рассмотрение вопросов применимости не-
четких когнитивных карт (НКК) для анализа надежности сложных человеко-машинных 
систем (ЧМС), а также разработка алгоритмов оценки факторов влияния на показатель 
надежности системы с учетом экспертных оценок. На примере анализа надежности си-
стемы интеллектуального видеомониторинга охраняемого объекта демонстрируется по-
строение нечеткой когнитивной карты, приводится метод расчета индексов важности и 
коэффициентов совместного влияния факторов для определения интегрального показа-
теля надежности системы. Разработан вычислительный алгоритм, приведены результаты 
его программной реализации. Выделены факторы, оказывающие наибольшее влияние на 
целевую переменную, рассчитаны и ранжированы факторы совместного влияния.
Ключевые слова: человеко-машинные системы, надежность, нечеткая логика, нечеткие 
когнитивные карты, экспертные оценки, факторы влияния, видеомониторинг.

Введение

При исследовании эффективности систем обеспечения комплексной безопасности, рассма-
триваемых как сложные человеко-машинные системы, возникает объективная потребность в 
выработке подходов к их моделированию с учетом факторов, не поддающихся прямому изме-
рению, включающих не только технические характеристики надежности системы, но и чело-
веческий фактор (состояние человека-оператора, уровень компетенций, степень утомления, 
скорость реакции). Для оценки надежности подобных систем, состояние которых зависит от 
большого количества взаимозависимых параметров, применение классических подходов, на-
пример, регрессионного анализа или традиционных систем нечеткого вывода, становятся ма-
лоэффективными, в том числе, в связи с наличием зависимостей между факторами влияния, 
отсутствием возможности количественной оценки показателей и др. 

Альтернативным вариантом в оценке надежности сложных человеко-машинных систем 
(ЧМС), можем считать применение нечетких когнитивных карт (НКК). Теория НКК получила 
свое развитие в работах Р. Аксельрода как продолжение идей Б. Коско [1, 2]. Эффективность 
НКК при исследовании ЧМС во многом определяется возможностью моделировать дина-
мику взаимного влияния факторов в случае использования качественных оценок, выявлять 
факторы, оказывающие наиболее сильное влияние на целевой показатель системы, осущест-
влять сценарное моделирование для принятия решений с учетом выявленных управляющих 
воздействий, за счет которых возможно наибольшее положительное воздействие на систему. 
В работе рассматривается применение нечетких когнитивных карт для ранжирования силы 
влияния множества факторов на надежность системы интеллектуального мониторинга ох-
раняемого объекта, рассматриваемой как человеко-машинная система. Целью исследования 
является применение когнитивного анализа для принятия решений по выбору наиболее пер-
спективных направлений повышения эффективности системы видеомониторинга охраняе-
мого объекта.
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1. Метод решения

1.1. Подход к построению нечеткой когнитивной карты

Применение НКК основывается на построении 
ориентированного взвешенного графа, где верши-
нами являются концепты .iC  Концепты служат 
ключевыми переменными модели. Взвешенные 
дуги графа [ 1;1]ijw ∈ −  отражают силу и направле-
ние причинно-следственных связей между концеп-
тами. При этом вес дуги ijw  характеризует интен-
сивность воздействия изменения концепта iC  на 
динамику концепта .jC  Общий вид НКК приведен 
на рис. 1.

При использовании НКК в сложных ЧМС 
источником информации о весах графа становят-
ся экспертные оценки, выраженные в лингвисти-
ческой форме: «повышает-понижает», «усилива-
ет-ослабляет», «растет-снижается» и т. д. с выбором 
соответствующего знака связи (положительный — 
отрицательный) [3].

Для описания нечеткой когнитивной карты ис-
пользуется граф ( , ),G C E=  где 1 2{ , ,... }kC C C C=  — множество узлов (вершин) графа (концеп-
ты). Множество всех возможных значений, которые может принимать степень влияния кон-
цепта, обозначим через L, множество ребер графа — через .E  Отображение : ( , )i j ijW C C w→  
ставит в соответствие паре концептов ( , )i jC C  ненулевое значение веса направленного ребра 

ijw  при i j≠  и 0 при .i j=  Таким образом, отображение ( )W C C⋅  представляется матрицей 
связи, имеющей нули на основной диагонали.

1.2. Нечеткая когнитивная карта системы видеомониторинга

Рассмотрим пример построения НКК для оценки надежности ЧМС «оператор — система 
видеомониторинга — охраняемый объект». В качестве концептов выделим следующие факто-

ры, влияющие на общую эффективность системы: 
квалификация и внимательность оператора 1( ),C  
режим и интенсивность работы поста охраны 2( ),C  
разрешающая способность и качество видеокамер 

3( ),C  эффективность алгоритмов видеоаналитики 
4( ),C  регулярность профилактического обслужива-

ния оборудования 5( ),C  качество и скорость техни-
ческой поддержки 6( ),C  условия окружающей сре-
ды 7( ),C  сложность и уязвимость охраняемой 
территории 8( ),C  надежность и пропускная способ-
ность сетевой инфраструктуры 9( ),C  общая надеж-
ность и эффективность системы видеомониторин-
га (целевой концепт, 10C ). На рис. 2 приведен вид 
нечеткой когнитивной карты, построенной с ис-
пользованием введенных концептов и модельных 

Рис. 1. Вид нечеткой 
когнитивной карты

Рис. 2. Нечеткая когнитивная карта 
системы видеомониторинга
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экспертных оценок весов дуг ориентированного графа. Для определения ijw  введена шкала 
оценок, позволяющая оценить количественно связи факторов влияния с учетом лингвистиче-
ских термов (табл. 1).

Таблица 1
Оценки силы влияния концептов

Лингвистической выражение оценки Количественное значение
Максимальное положительное влияние фактора 1
Положительное влияние фактора, выше среднего значения 0,75
Положительное среднее влияние фактора 0,5
Положительное влияние фактора, ниже среднего значения 0,25
Влияние отсутствует 0
Отрицательное влияние фактора, ниже среднего значения –0,25
Отрицательное среднее влияние фактора –0,5
Отрицательное влияние фактора, выше среднего значения –0,75
Максимальное отрицательное влияние фактора –1

В случае необходимости учета мнения нескольких экспертов групповая оценка величины 
ijw  может вычисляться через взвешенное среднее:

	
1 2

1 2

1 2

...
,

...

m
ij ij m ij

ij
m

w w w
w

α α α
α α α
+ + +

=
+ + +

где p
ijw  — оценка силы влияния концептов p-м экспертом; pα  — весовой коэффициент, отра-

жающий вес мнения p -го эксперта, 1,2,... ,p m=  m  — количество экспертов [4].
В рассматриваемом случае матрица связей W  имеет вид:

	

0 0 0 0 0 0 0 0 0 0,5
0,25 0 0 0 0 0 0 0 0 0,75
0 0 0 0 0 0 0 0 0 0,25
0 0 0 0 0 0 0 0 0 0,75
0 0 0,25 0 0 0 0 0 0 0

.
0 0 0,25 0 0 0 0 0 0,5 0
0 0 0,5 0 0 0 0 0 0 0,5
0 0 0 0 0 0 0 0 0 0,25
0 0,25 0 0 0 0 0 0 0 0,5
0 0 0 0 0 0 0 0 0 0

W

 
 − − 
 
 
 
 

=  
 
 − −
 

− 
 
  
 

Для вычисления значений концептов в динамике введем соотношение:

	 1

1
, 0,1, 2,...,

k
k k k

i j ij i
j
j i

A f A w cA k+

=
≠

 
 = + =  
 
∑ 	 (1)

где 1k
iA +  — величина концепта iC  на шаге 1,k +  ,k k

i jA A  — величины ,iC  jC  на шаге ,k  соот-
ветственно, ijw  — величина влияния iC  на ,jC  [0,1]c∈  — вклад значения концепта на преды-
дущем шаге (предыстория), f  — пороговая функция для нормировки значений в единичный 
отрезок. Под величиной концепта понимаем степень его выраженности на шаге .k  В качестве 
пороговой функции выберем правую часть гиперболического тангенса:
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tanh( ), 0

( ) ,
0, 0

x x
f x

x
≥

=  <
   tanh( ) .

x x

x x

e ex
e e

−

−

−
=

+
	 (2)

1.3. Расчет индексов влияния

Пусть 1,k kA A +  — векторы значений концептов системы на шагах ,k  1,k +  соответственно, 
0W  — квадратная матрица значений взаимного влияния концептов нечеткой когнитивной 

карты. Тогда можем представить (1) в матричном виде [5]:
	 ( )1

0 , 0,1, 2,...,k k k
iA f A W cA k+ = + = 	 (3)

где
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21 2
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1 2
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.
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n n

w w
w w

W

w w

 
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	 (4)

Заменяя значения главной диагонали матрицы (4) на коэффициент :c
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W

w w c

 
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	 (5)

приходим от преобразования (4) к следующему виду:
	 ( )1 , 0,1, 2,...k k

iA f A W k+ = = 	 (6)
Для учета значений концептов на нулевом шаге вводится вектор начальных значений кон-

цептов 0 0 0 0
1 2[ , ,..., ].nA A A A=  Вычисление целевого показателя эффективности системы сводит-

ся к нахождению значения выходного концепта ,nC  равного [0;1].nA ∈  Величина значения 
концепта nC  на первом шаге является функцией от элементов вектора 0 0 0 0

1 2[ , ,..., ],nA A A A=  т. е. 
0 0 0
1 2( , ,..., ).l

n nA F A A A=  В качестве l
nA  принимаем значения nC  в стационарном режиме (такой 

шаг ,l  на котором l
nA  близко к 1l

nA − ).
Пусть (1 ,0)jF  — значение функции из (6) при 0 1jA =  и равенстве нулю всех остальных 

аргументов, (0)F  — значение функции из (6) при равенстве нулю всех аргументов, (1 ,1 ,0)j kF  
при 1j kA A= =  и равенстве нулю всех остальных аргументов.

Для определения важности концепта jC  и совместной важности концептов ,jC  kC  вводят-
ся, соответственно, величины ( ),jI C  ( , ),j kI C C  для вычисления которых согласно [6, 7] могут 
быть использованы соотношения:

	
(1 ,0) (0)

( ) (1 ,0),
(1 0)

l
jn

j j
j

F FAI C F
A

−∂
= = =
∂ −

	
2 (1 ,1 ,0) (0)

( , ) (1 ,1 ,0).
(1 0)(1 0)

l
j kn

j k j k
j k

F FAI C C F
A A

−∂
= = =
∂ ∂ − −

	 (7)

Алгоритм вычисления интегрального целевого показателя на основе нечеткой когнитив-
ной карты сводится к выполнению последовательности шагов:

1. Задание начального вектора 0.A
Для индекса важности ( ):jI C
	 0 0 01, 0, 1, 2,..., , ,j iA A A i n i j = = = = ≠  ,	 (8)

для ( , ):j kI C C
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	 0 0 0 01, 0, 1, 2,..., , .j k iA A A A i n i j = = = = = ≠  	 (9)

2. Применяя соотношения (7), находим вектор состояния системы

	 1 2, ,..., ,l l l l
nA A A A =   	 (10)

такое, что 1
1 1 ,l lA A ε−− <  где 0ε >  — мало, 1,2,...,i n=  (установившийся режим).

В качестве значений индекса важности ( )jI C  принимаем элементы l
nA  из (10), полученные 

с использованием (8), для определения индекса важности ( , )j kI C C  используем элементы l
nA  

из (10), полученные с использованием (9).

2. Результаты программной реализации

Для автоматизации расчетов индексов влияния факторов и сценарного моделирования со-
гласно приведенному алгоритму разработано программное средство на языке программиро-
вания Python. Инструменты визуализации, реализованные в программном средстве, обеспе-
чивают возможность выявления факторов, оказывающих наибольшее (наименьшее) влияние 
на общую надежность рассматриваемой системы. С использованием приведенного алгоритма 
вычислены индексы влияния факторов на целевой концепт системы (рис. 3).

Согласно полученным результатам наибольшее влияние на эффективность системы виде-
омониторинга оказывают факторы 2C  (режим и интенсивность работы поста охраны, особен-
ности графика работы, загруженность оператора, количество одновременно обрабатываемых 
видеопотоков), 6C  (качество и скорость технического обслуживания оборудования), 7C  (эф-
фективность алгоритмов видеоаналитики, качество программного обеспечения, его эффек-
тивность при автоматической детекции событий), 6C  (негативные условия окружающей сре-
ды, плохая видимость).

На рис. 4 приведены результаты расчета факторов совместного влияния концептов на эф-
фективность системы. Согласно полученным результатам наибольший синергетический эф-
фект дают одновременное воздействие на систему факторов 2C  и 7 ,C  4C  и 6 ,C  1C  и 6.C

Рис. 3. Результат ранжирования факторов влияния
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Заключение

В ходе проведенного исследования показано, что предложенный метод анализа ЧМС на 
основе нечетких когнитивных карт может быть применен для определения «слабых звеньев» 
системы, определения наиболее актуальных направлений модернизации процессов и средств 
видеомониторинга на охраняемой территории. Разработан вычислительный алгоритм ранжи-
рования факторов влияния на общую надежность системы. Разработанный алгоритм позво-
ляет определять направления повышения качества системы видеомониторинга. Так, согласно 
полученным результатам, можно сделать вывод о необходимости корректировки факторов 
организационного характера (режим охраны, необходимость непрерывного обучения, повы-
шения квалификации персонала), совершенствование инженерно-технического обеспечения 
охраняемого объекта, инвестиции в качественное программное обеспечение. Согласно полу-
ченным результатам предложенный метод к анализу надежности ЧМС может быть использо-
ван в качестве эффективного инструмента исследования сложных слабоструктурированных 
систем, характеристики которых определяются совокупностью взаимозависимых факторов, 
оцениваемых преимущественно экспертными процедурами.
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УДК 004.891

РАЗРАБОТКА ЧАТ-БОТА КЛИЕНТСКОЙ ПОДДЕРЖКИ ДЛЯ КОММЕРЧЕСКОГО 
БАНКА НА ОСНОВЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ

Воронежский государственный университет

К. Е. Чекина

Аннотация. В статье проведён обзор существующих чат-ботов клиентской поддержки, 
используемых в российских коммерческих банках, с привлечением отдельных междуна-
родных примеров. Анализ осуществлён по критериям: актуальность внедрения, функци-
онал, технологическая база, отличительные характеристики, пользовательские оценки и 
выявленные недостатки. Рассматриваются решения крупнейших банков — Сбербанка, 
ВТБ, Альфа-Банка и Т-Банка, а также международные — Bank of America, Capital One. 
Показано, что чат-боты являются одним из ключевых инструментов цифровизации бан-
ковской сферы, однако требуют дальнейшего развития в направлении персонализации, 
расширения функционала и совершенствования диалоговых возможностей.
Ключевые слова: чат-бот, машинное обучение, искусственный интеллект, коммерче-
ские банки, клиентская поддержка, NLP, клиентское обслуживание, автоматизация, биз-
нес-процессы, языковые модели, цифровизация.

Введение

Современная банковская сфера переживает активный процесс цифровой трансформации. 
В условиях высокой конкуренции и роста ожиданий клиентов финансовые организации вы-
нуждены внедрять новые технологические решения, способные обеспечить круглосуточную 
доступность, персонализацию обслуживания и снижение операционных затрат. Одним из 
таких решений стали чат-боты, которые благодаря использованию методов машинного обу-
чения (ML) и обработки естественного языка (NLP) способны заменить или дополнить тради-
ционные каналы коммуникации — колл-центры и офисные консультации.

Разработка чат-ботов в банковской сфере началась относительно недавно, однако уже се-
годня они охватывают значительную часть клиентских запросов. По данным аналитических 
агентств, чат-боты позволяют автоматизировать до 70–80 % стандартных обращений, что ве-
дёт к сокращению нагрузки на операторов и снижению затрат на обслуживание. При этом 
сохраняется проблема ограниченности диалога и недостаточной гибкости при работе с не-
стандартными запросами.

Целью данной статьи является проведение обзорного анализа существующих решений в 
области чат-ботов коммерческих банков по ключевым параметрам: актуальность, функцио-
нал, технологическая основа, отличительные характеристики, пользовательские оценки и вы-
явленные направления для доработки.

1. Актуальность

Актуальность внедрения чат-ботов в коммерческих банках обусловлена рядом факторов. 
Во-первых, изменилось поведение клиентов: современный пользователь требует быстрого и 
круглосуточного доступа к информации и услугам, а традиционные контактные центры не 
способны в полной мере удовлетворить этот запрос. Во-вторых, банки сталкиваются с необ-
ходимостью оптимизировать издержки на обслуживание, что становится особенно важным в 
условиях высокой конкуренции и экономической турбулентности. Автоматизация клиентских 
обращений позволяет значительно сократить расходы на содержание больших колл-центров.
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Кроме того, использование чат-ботов повышает конкурентоспособность банка. В условиях, 
когда финансовые продукты во многом схожи, качество обслуживания становится ключевым 
фактором привлечения и удержания клиентов. Возможность решить проблему в несколько 
кликов через чат-бот создаёт положительный пользовательский опыт и укрепляет лояльность 
клиентов.

2. Функционал

Современные банковские чат-боты предоставляют широкий спектр функций. Форум «Фи-
нополис-2025» подтвердил курс финансового сектора на технологическую независимость и ин-
теграцию искусственного интеллекта во все уровни клиентского сервиса. К таким функциям 
относятся предоставление информации о состоянии счёта и продуктах банка, возможность 
совершения простых операций (например, блокировка карты, переводы между собственными 
счетами, оплат коммунальных или иных регулярных платежей), навигация по услугам банка, 
оперативное получение справочной информации, а также интеграция с различными каналами 
доступа — мобильное приложение, мессенджеры, веб-чат. Эти функции сегодня можно счи-
тать базовыми для большинства ведущих банковских решений, поскольку они закрывают вос-
требованные сценарии самообслуживания и уменьшают нагрузку на контакт-центр. При этом 
важно отметить, что хотя базовые функции у многих чат-ботов схожи, их реализация и глубина 
отличаются: некоторые решения ограничиваются справочно-информационной ролью, другие 
поддерживают полноценные транзакции и сами инициируют действия по запросу клиента.

Значимый аспект — применение машинного обучения (ML) и технологий искусственного 
интеллекта (ИИ) в работе чат-ботов банков. Такие технологии позволяют реализовывать авто-
матическое распознавание намерения пользователя, анализ истории взаимодействий, прогно-
зирование потребностей клиента, а также адаптацию ответа бота под конкретного пользова-
теля. Например, в одном из российских банков выяснено, что чат-бот по текстовым диалогам 
обрабатывает до 46 % обращений с использованием около 150 тематик в рамках 124 сценариев. 
При этом банки отмечают применение моделей машинного обучения при распределении об-
ращений клиентов по категориям и оптимизации работы контакт-центра.

Машинное обучение также позволяет повысить точность автоматического ответа, улуч-
шать классификацию новых запросов и снижать долю операций, требующих вмешательства 
живого оператора. Таким образом, ИИ-компонент становится ключевым элементом зрелости 
чат-бота: от простого «бота-меню» к «умному ассистенту», способному вести контекстный ди-
алог и решать задачи клиента.

В последние годы развивается функционал проактивных сервисов: чат-бот может сам ини-
циировать коммуникацию с клиентом, напоминая о платежах, предупреждая о подозритель-
ных операциях или предлагая персонализированные финансовые решения. Здесь ярко прояв-
ляется применение машинного обучения, позволяющего анализировать поведение клиента и 
формировать прогнозы.

Исходя из этого, при сравнении функционала чат-ботов разных банков можно выделить 
основные различия и акценты, на которые ориентируются отдельные коммерческие учреж-
дения. Во-первых, глубина транзакционной автоматизации: одни банки оставляют бота пре-
имущественно в справочной роли, другие позволяют завершать операции целиком в чате, без 
перехода в мобильное приложение или сайт. Во-вторых, каналовая мультиформатность: часть 
банков делает акцент на текстовом чате, другая — на голосовом интерфейсе или мультимо-
дальных сценариях (распознавание изображений, голосовое управление). В-третьих, уровень 
персонализации и проактивности: некоторые решения просто отвечают на запросы, тогда как 
другие предвидят потребности клиента, предлагают рекомендации и автоматически уведом-
ляют об изменениях или рисках. Кроме того, банки по-разному подходят к интеграции с эко-
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системой-сервисов: у одних чат-бот ограничен клиентским интерфейсом, у других — часть 
крупного цифрового окружения с данными, продуктами и сервисами партнёров. Таким об-
разом, различия в функционале отражают стратегические приоритеты банка: безопасность и 
стабильность, скорость непрерывного обслуживания, эмоциональная вовлечённость клиента 
или расширение экосистемы.

3. Описание существующих решений

Сбербанк. Один из наиболее продвинутых чат-ботов в российской банковской сфере. 
В последние годы Сбер внедряет решения на базе генеративных моделей и собственной плат-
формы GigaChat. Чат-бот интегрирован в экосистему банка, что позволяет клиенту решать 
широкий круг задач — от финансовых до бытовых.

ВТБ. Чат-бот «Помощник ВТБ» способен охватывать более 1900 тем, обеспечивая автома-
тизацию до 85 % обращений клиентов. Основное преимущество заключается в широте функ-
ционала и способности обрабатывать запросы различной сложности.

Альфа-Банк. Чат-бот банка реализован с использованием технологий больших языковых 
моделей (LLM), что обеспечивает поддержку более чем 50 языков. Это позволяет обслуживать 
не только российских клиентов, но и международную аудиторию.

Т-Банк. Акцент сделан на голосовых технологиях и использовании собственной платфор-
мы VoiceKit. Чат-бот сочетает текстовое и голосовое взаимодействие, предоставляя клиентам 
более гибкий канал коммуникации.

Международные решения. Для сравнения можно выделить Erica (Bank of America), которая 
анализирует транзакции и формирует персональные финансовые советы, а также Eno (Capital 
One), акцентирующую внимание на безопасности платежей и контроле расходов. Эти приме-
ры демонстрируют более высокий уровень персонализации и проактивности по сравнению с 
большинством российских аналогов.

4. Отличия

Основные отличия существующих решений заключаются в применении технологий и при-
оритетах развития.

– Сбербанк делает ставку на генеративные модели и экосистемный подход.
– ВТБ стремится охватить максимально широкий спектр клиентских запросов.
– Альфа-Банк выделяется мультиязычной поддержкой.
– Т-Банк активно развивает голосовое взаимодействие.
Международные решения отличаются большей ориентацией на персонализацию и про-

гнозирование поведения клиента, тогда как в российских реалиях акцент делается на автома-
тизацию стандартных процессов.

5. На чем основаны

Технологической основой чат-ботов выступают методы обработки естественного языка 
(NLP), машинного обучения и нейросетевых моделей.

– Для распознавания речи применяются акустические модели и алгоритмы ASR (automatic 
speech recognition).

– Для понимания и генерации текста используются трансформерные архитектуры, вклю-
чая большие языковые модели (LLM).

– Для персонализации сервисов задействуются алгоритмы машинного обучения (ML), 
анализирующие транзакционную активность и поведенческие паттерны клиентов.
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– Для выделения имен, дат, сумм, номера счета и адресов внедряется технология распозна-
вания данных (NER) и сокращается количество шагов в диалоге.

С 1 марта 2023 года вступил в силу Федеральный закон от 29.12.2022 № 584-ФЗ, который 
ввёл запрет для российских банков и финансовых организаций на использование иностран-
ных программных продуктов в сфере коммуникаций. Ограничение распространяется, в том 
числе, на обмен финансовыми и персональными данными. В перечень запрещённых решений 
вошли такие сервисы, как Telegram и Microsoft Teams. Соответственно, в банковской отрасли 
недопустимо применять, например, Telegram-ботов для обслуживания клиентов, если в про-
цессе затрагивается персональная или финансовая информация.

Для соблюдения требований закона рекомендуется переходить на отечественные про-
граммные решения. Некоторые банки разрабатывают собственные решения (например, 
Сбер — GigaChat, Тинькофф — VoiceKit), что позволяет снизить зависимость от зарубежных 
технологий и адаптировать их под локальные условия.

6. Оценки пользователей

Пользователи в целом положительно оценивают внедрение чат-ботов, отмечая скорость и 
удобство получения информации. Например, в 2018 году доля запросов, требующих живого 
оператора, составляла около 70 %, а к 2024 году благодаря технологии машинного обучения 
эта цифра снизилась до 35 %. Согласно исследованиям, уровень удовлетворённости клиентов 
достигает 70–80 %, что сопоставимо с традиционным обслуживанием через операторов.

Однако сохраняются и проблемные зоны. Нередко клиенты выражают недовольство при 
столкновении с ограничениями чат-бота: непонимание сложных или нестандартных запро-
сов, невозможность вести свободную беседу, избыточные переходы к оператору. Это указыва-
ет на необходимость дальнейшего совершенствования технологий обработки языка.

7. Что требует доработки

Несмотря на достигнутый прогресс, чат-боты в банковской сфере всё ещё требуют дора-
ботки по ряду направлений:

– развитие диалоговых возможностей, включая понимание сленга, сокращений и много-
ступенчатых запросов;

– углубление персонализации, что предполагает анализ истории клиента и формирование 
индивидуальных предложений;

– расширение мультиязычной поддержки;
– интеграция с внешними сервисами, выходящими за рамки финансовой сферы;
– повышение уровня доверия за счёт обеспечения конфиденциальности и безопасности 

коммуникации.

Заключение

Проведённый анализ показал, что российские коммерческие банки активно внедряют 
чат-боты, которые уже сегодня выполняют значительную часть функций клиентской поддерж-
ки. Наиболее сильными сторонами являются скорость обслуживания, снижение издержек и 
круглосуточная доступность. Однако в сравнении с международными решениями российские 
чат-боты пока отстают в части персонализации и проактивности.

Дальнейшее развитие связано с интеграцией больших языковых моделей, совершенствова-
нием технологий NLP и машинного обучения, а также расширением функционала за пределы 
стандартных операций. Это позволит чат-ботам не только обслуживать клиентов, но и стано-
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виться полноценными финансовыми ассистентами, способными прогнозировать потребно-
сти и предлагать индивидуальные решения.

Литература

1. Редакция developers.sber.ru. O SaluteBot. Возможности чат-бота – 2024. – URL: https://
developers.sber.ru/help/salutebot/opportunity (дата обращения: 25.09.2025)

2. ВТБ. Как мы обучили чат-бота вести диалог с помощью искусственного интеллекта – 
2025. – URL: https://vc.ru/ai/1988947-obuchenie-chat-bota-vtb-s-iskusstvennym-intellektom (дата 
обращения: 26.09.2025)

3. Паршин К. В Альфа-Банке заявили о внедрении агента для общения на иностранных 
языках – 2025. – URL: https://lenta.ru/news/2025/07/10/v-alfa-banke-zayavili-o-vnedrenii-agenta-
dlya-podderzhki-obscheniya-na-inostrannyh-yazykah/ (дата обращения: 25.09.2025)

4. Т-Банк : официальный сайт. – 2025.  – URL: https://www.tbank.ru/software/voicekit/ (дата 
обращения: 25.09.2025)

5. Aldridge A. A Decade of AI Innovation: BofA’s Virtual Assistant Erica Surpasses 3 Billion 
Client Interactions – 2025.  – URL: https://newsroom.bankofamerica.com/content/newsroom/press-
releases/2025/08/a-decade-of-ai-innovation--bofa-s-virtual-assistant-erica-surpas.html (дата обра-
щения: 25.09.2025)

6. Capital One : официальный сайт. – 2025. – URL: https://www.capitalone.com/digital/tools/
eno/ (дата обращения: 25.09.2025)

7. Сатин Д. Банковские чат-боты: текущее состояние, тренды и лучшие практики – 2025. – 
URL: https://usabilitylab.ru/blog/bankovskie-chat-boty/ (дата обращения: 25.09.2025)

8. Подольская Т. В. Практика внедрения компьютерного аудита и искусственного интеллек-
та в банковском секторе / Т. В. Подольская, А. П. Сидельников, Л. Гелашвили // Вопросы ин-
новационной экономики. – 2021. – Т. 11, № 4. – С. 1493–1508. – DOI 10.18334/vinec.11.4.113673 
(дата обращения: 25.09.2025)

9. eXpress. Чат-бот банка. Что это и как работает – 2024. – URL: https://express.ms/blog/
obzory/chat-boty-bankov-kak-rabotayut-tsifrovye-pomoshchniki/ (дата обращения: 25.09.2025)

10. Стрункин Р. Как банки используют искусственный интеллект для персонализации 
услуг и продуктов – 2025. – URL: https://www.raiffeisen-media.ru/biznes/kak-banki-ispolzuyut-
iskusstvennyj-intellekt-dlya-personalizaczii-uslug-i-produktov/ (дата обращения: 25.09.2025)

11. Москаль А. Финополис-2025: налоговый бот от Сбера, бизнес-ассистент «Катюша» 
от ПСБ и акселератор для НКО от Т-Банка – 2025. – URL: https://rb.ru/news/finopolis-2025-
nalogovyj-bot-ot-sbera-biznes-assistent-katyusha-ot-psb-i-akselerator-dlya-nko-ot-t-banka/ (дата 
обращения: 25.09.2025)

12. Швецова А. Клиенты банков все больше отдают предпочтение чат-ботам – 2025. – URL: 
https://www.comnews.ru/content/232964/2024-05-03/2024-w18/1008/klienty-bankov-vse-bolshe-
otdayut-predpochtenie-chat-botam?utm_source=chatgpt.com (дата обращения: 25.09.2025)



474

УДК 004.932.72

ПРИМЕНЕНИЕ VOXELMORPH В ЗАДАЧЕ СЕГМЕНТАЦИИ 
МЕДИЦИНСКИХ 3D ИЗОБРАЖЕНИЙ
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А. В. Черемискин1, И. Л. Каширина1,2

Аннотация. В работе рассматривается применение VoxelMorph для регистрации муль-
тифазных КТ печени в задаче сегментации. Многофазные данные содержат ценную ди-
агностическую информацию, однако смещения анатомических структур между фазами 
затрудняют автоматическую обработку. Использование VoxelMorph позволяет скоррек-
тировать эти различия за счёт моделирования нелинейных деформаций. После регистра-
ции изображения использовались для обучения сегментационной модели ResUNet. При-
менение VoxelMorph демонстрирует потенциал для интеграции в мультифазные pipelines 
медицинской визуализации. Дальнейшие исследования могут быть направлены на опти-
мизацию совмещения регистрации и сегментации в единой архитектуре.
Ключевые слова: VoxelMorph, регистрация изображений, сегментация, ResUNet, поле 
смещений, анатомическое выравнивание, карцинома, медицинские изображения.

Введение

Сегментация медицинских изображений является одной из ключевых задач в современ-
ной компьютерной диагностике, так как точное выделение анатомических структур лежит в 
основе последующего анализа и лечения. Последние исследования [1] показали эффектив-
ность применения мультифазного подхода, при котором используются снимки с разных фаз 
контрастирования для одного пациента. Но на данный момент при таком подходе остаются 
сложности, связанные с изменением положения анатомических структур между фазами, что 
приводит к снижению точности сегментации. Одним из решений этой проблемы может быть 
регистрация изображений. Развитие нейронных сетей упростило этот процесс, в частности 
VoxelMorph [2] зарекомендовал себя как эффективный метод регистрации, способный учи-
тывать сложные пространственные взаимосвязи. Цель данной работы — оценить, как влияет 
применение VoxelMorph регистрации на итоговую точность сегментации.

1. Материалы и методы

В исследовании был использован набор данных WAW-TACE [3], в котором содержатся дан-
ные пациентов с гепатоцеллюлярной карциномой. В этом наборе данных представлены 
КТ-снимки с разных фаз контрастирования, маски сегментации опухолей, маски сегментации 
внутренних органов, автоматически сгенерированные при помощи «Total Segmentator» [4]. 
Важно отметить, что у каждого пациента маска опухоли была размечена на одной фазе контра-
стирования, таким образом, для пространственного соответствия маски КТ-снимкам других 
фаз, необходима регистрация изображений. Из всех пациентов были выбраны те, у которых 
присутствуют все фазы контрастирования. Затем все КТ снимки были приведены к единому 
разрешению по оси Z  с толщиной среза 1мм. Кроме того, для фокусирования обучения моде-
лей на области печени все воксели вне маски печени, полученной при помощи «Total Segmentator», 
были заменены на –1024, что соответствует значению воздуха по шкале Хаунсфилда. Также на 
этапе предобработки была выполнено смещение по Z  оси тех КТ-снимков, для которых впо-
следствии будет применяться VoxelMorph регистрация. Величина смещения определялась по 
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максимальному совпадению профилей масок печени между фазами. Данные были разделены 
на тренировочную и тестовую выборки в пропорции 85 % к 15 % соответственно. 

Используемая архитектура VoxelMorph построена на U-Net подобной структуре с последо-
вательными этапами энкодера и декодера, каждый из которых состоит из сверточных слоев с 
ядром 3 3 3.× ×  После каждого сверточного слоя использовался слой активации LeakyReLu. В 
энкодере для постепенного понижения пространственного разрешения используются свертки 
со stride = 2. Декодер постепенно восстанавливает пространственное разрешение, чередуя свер-
точные слои с Upsample слоями. Кроме того, в данной архитектуре используются пропускные 
соединения (skip-connections), которые передают данные из энкодера в соответствующие слои 
декодера. На вход сети подается пара изображений — фиксированное (fixed) и подвижное 
(moving), которые объединяются в единый двухканальный объем. Предсказанием сети являет-
ся трехмерное поле смещений (flow), описывающее деформацию, необходимую для приведения 
подвижного изображения к фиксированному. Архитектура сети представлена на рис. 1.

В качестве функции ошибки использовалась комбинация метрики сходства между зареги-
стрированным и фиксированным изображениями и регуляризации поля смещений. В каче-
стве метрики сходства использовалась локальная кросс-корреляция (CC).
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где f  — фиксированное изображение, m φ  — зарегистрированное изображение, ˆ ( )if p  — 
среднее значение вокселей фиксированного изображения в окрестности 9 9 9× ×  вокселя ,p  

ˆ[ ]( )im pφ  — среднее значение вокселей зарегистрированного изображения в окрестности 
9 9 9× ×  вокселя .p

Рис. 1. Архитектура VoxelMorph
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Регуляризация используется для того, чтобы поле деформаций было гладким и физически 
реалистичным. Ошибка регуляризации выглядит следующим образом

	 ( ) ( ) ( )( ) ( , , ) ,smooth
p

u p u p u pL
x y z

φ
∈Ω

∂ ∂ ∂
=

∂ ∂ ∂∑
где u  — поле смещений, при этом используется аппроксимация ( ) (( 1, , )) (( , , )),x y z x y z
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Итоговая функция ошибки выглядит следующим образом
	 ( , , ) ( , ) ( ).us smoothL f m CC f m Lφ φ λ φ= − +

Обучение VoxelMorph проводилось на тренировочной выборке в течении 50 эпох. Для 
каждого пациента выбиралась целевая фаза — та, на которой были размечены опухоли. Сним-
ки с остальных фаз выступали в качестве подвижного изображения. Для экономии ресурсов 
КТ снимки обрабатывались патчами размера 48 256 256.× ×  Итоговый прогноз в свою очередь 
выполнялся методом скользящего окна.

В качестве модели сегментации использовалась нейронная сеть ResUNet. Эта архитектура 
сочетает классическую U-Net структуру с остаточными блоками (residual blocks), что облегча-
ет обучение глубоких нейронных сетей и предотвращает затухание градиентов. Обучение 
проводилось в течении 300 эпох, в качестве функции ошибки использовалась TverskyLoss c 

0.3,a =  0.7.b =

	 1 ,TPTverskyLoss
TP a FP b FN

= −
+ ⋅ + ⋅

где TP  — количество истинно положительных вокселей, FP  — количество ложно положи-
тельных вокселей, FN  — количество ложно отрицательных вокселей, a  — коэффициент, ре-
гулирующий важность ложно положительных ошибок, b  — коэффициент, регулирующий 
важность ложно отрицательных ошибок. 

Модель обучалась на артериальной фазе контрастирования. Для сравнения модель была 
обучены как на исходных данных, так и на данных после регистрации.

2. Результаты и обсуждение

Пример результатов работы VoxelMorph представлен на рис. 2. 
Можно заметить, что помимо пространственного сдвига, применение VoxelMorph приво-

дит к локальному сглаживанию изображения.
Полученные в результате обучения ResUNet результаты представлены в табл. 1.
Результаты тестирования показали, что применение VoxelMorph в качестве регистрации к 

набору данных, несмотря на качественное пространственное смещение, приводит к уменьше-
Таблица 1

Результаты обучения ResUNet моделей

Показатель Исходные данные Зарегистрированные 
изображения

Dice 0.64 0.57
Dice Global 0.66 0.67
Процент зарегистрированных изображений 
в тренировочной выборке

0 % 48 %

Процент зарегистрированных изображений 
в тестовой выборке

0 % 41 %
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нию метрики Dice, при одновременном улучшении Dice Global. Такое поведение чаще всего оз-
начает, что сеть лучше распознает крупные объекты и хуже небольшие. В задаче сегментации 
опухолей зачастую важнее различать именно маленькие патологии, таким образом снижение 
локальной точности сегментации является критичным.

Полученные результаты могут указывать на то, что процесс регистрации сглаживает мел-
кие структуры, это также можно заметить на рис. 2. При этом улучшение Dice Global говорит 
о лучшем смещении крупных анатомических областей, что ожидаемо для модели, которая соз-
дает гладкое поле смещений.

Заключение

Данное исследование показывает, что применение VoxelMorph может быть полезным в за-
дачах, где ключевую роль играет корректное выравнивание больших анатомических структур, 
однако для задач сегментации мелких патологий такой подход требует дополнительной на-
стройки. Возможными направлениями улучшения могут быть: снижение вклада регуляриза-
ции в функцию ошибки, совместное обучение регистрации и сегментации (joint training).

Рис. 2. Результат применения VoxelMorph, где warped — зарегистрированное изображение, 
, ,dx dy dz  — смещения по трем осям. Original и Warped grid — система координат до и после 

деформации. RGB flow – объединенное цветовое представление поля смещений
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Аннотация. В статье рассматривается алгоритм построения диагностических правил 
для автоматизации процесса принятия решений с целью диагностики форм лейкоплакии 
ротовой полости, которая относится к предраковым заболеваниям. В качестве исходной 
информации используются результаты, полученные методом оптической спектроскопии 
в виде совокупности интенсивностей флуоресценции (ИФ) для различных наборов волн. 
Диагностическое дерево построено с использованием метода деревьев решений.
Ключевые слова: лейкоплакия, интенсивность флуоресценции, деревья решений, диа-
гностические правила.

Введение

Лейкоплакия ротовой полости — поражение слизистой, возникающее вследствие посто-
янного раздражения и сопровождающееся повышенным ороговением (гиперкератозом) [1]. 
Опасность лейкоплакии заключается в том, что она может переродиться в рак, поэтому ее 
ранняя диагностика крайне важна. 

Под медицинской диагностикой понимается процесс установления диагноза — заключе-
ния о болезни и состоянии пациента, выраженное в принятой медицинской терминологии 
[2]. Задача медицинской диагностики заключается в том, чтобы на основе совокупности по-
казателей, характеризующих состояние пациента, из некоторой совокупности заболеваний 
выделить то, которое в максимальной степени соответствует состоянию пациента. Сложность 
постановки диагноза заключается в том, что некоторые симптомы могут быть характерными 
сразу для нескольких заболеваний. Кроме того, даже при одном и том же заболевании у двух 
пациентов симптомы могут проявляться с разной интенсивностью. Опытный врач принимает 
во внимание весь комплекс проявляющихся симптомов, его опыт позволяет сократить множе-
ство возможных заболеваний до минимума, а затем, применяя дополнительные методы диа-
гностики, установить заболевание и назначить пациенту лечение. Процесс рассуждений врача 
относительно тех показателей, которые выделены, можно формализовать в виде диагностиче-
ского дерева, которое, по сути, относится к деревьям решений [3]. 

Статья посвящена описанию алгоритма построения диагностического дерева, который 
определяет набор показателей и последовательность их рассмотрения при диагностике лейко-
плакии ротовой полости, а также его программной реализации.

1. Общий подход к диагностике лейкоплакии ротовой полости

1.1. Основные формы лейкоплакии

Лейкоплакия — поражение слизистой оболочки, вызванное нарушениями на клеточном 
уровне, которое проявляется очаговым ороговением многослойного плоского эпителия. По-
раженные участки представляют собой единичные или множественные белесоватые или бе-
ло-серые очаги с четкими контурами различной формы и размеров. Появление лейкоплакии 
связано с различными травмирующими факторами, а также наследственной предрасположен-
ностью, наличием вируса папилломы человека, сахарным диабетом, болезнями органов желу-
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дочно-кишечного тракта.  Лейкоплакия относится к предраковым заболеваниям. В процессе 
развития ЛРП выделяют две основные формы [4], которые представляют собой этапы патоло-
гического процесса и требуют специальных подходов к лечению: плоская лейкоплакия, проте-
кающая с невыраженной симптоматикой (больной жалуется только на повышенную сухость 
слизистой оболочки, симптомы натянутости губ, щек); веррукозная лейкоплакия (бляшечная и 
эрозивная формы) — происходит прогрессивное ороговение, есть большая вероятность пере-
хода в злокачественный процесс.

Для диагностики типа лейкоплакии предлагается использовать технологию деревьев ре-
шений. Диагностическое дерево учитывает взаимосвязи между значениями показателей 
(атрибутов) причем с учетом динамически формируемых приоритетов. В каждом узле дере-
ва находится предикат, истинность или ложность которого является основой для ветвления. 
Прогнозирование (предсказание) или классификация на основе дерева решений осуществля-
ется как перемещение по дереву от корня к некоторой висячей вершине. 

1.2. Диагностика ЛРП на основе оптической спектроскопии

Основной метод диагностики лейкоплакии основан на биопсии пораженных участков сли-
зистой с последующим гистологическим и цитологическим исследованием полученного ма-
териала. Однако, для оценки вероятности перехода повреждений в раковую опухоль возни-
кает необходимость в привлечении дополнительных диагностических методов, в частности, 
методов оптической спектроскопии: лазерно-индуцированная флуоресценция (ЛИФ) и метод 
диффузного отражения (МДО). 

В проведенном исследовании спектры флуоресценции регистрируются с помощью устрой-
ства, созданного на базе волоконно-оптического спектрометра, сопряженного с компьютером, 
и зонда для измерения отражения в форме волоконного жгута. Дополнительно используется 
метод спектроскопии отражения в видимом и ближнем ИК-диапазоне длин волн на основе 
волоконно-оптического спектрофотометра. Экспериментально были получены спектры диф-
фузного отражения от участков ткани слизистой, пораженной простой формой лейкоплакии 
и веррукозной формой лейкоплакии, а также интактных участков слизистой полости рта. Ви-
зуализация результатов позволяет сделать следующие выводы:

1) спектры отражения интактной слизистой и слизистой, пораженной лейкоплакией, су-
щественно отличаются по интенсивности, причем имеют разнонаправленную зависимость;

2) все спектральные полосы для пораженной слизистой более размыты по сравнению со 
спектром интактной слизистой.

Таким образом, для раннего выявления поражений ротовой области и диагностики форм 
лейкоплакии целесообразно использовать спектральный анализ с привлечением методов ма-
шинного обучения. Ясно, что при таком подходе требуется сформировать качественное обу-
чающее множество (рис. 1). Исходная информация формируется для двух групп пациентов: 
первая группа — больные веррукозной формой, вторая группа — больные простой формой. 
Данные собирают с помощью специального прибора путем облучения пораженных и здоро-
вых участков различными длинами волн (для каждой длины волны делается 14 измерений), 
тем самым, для каждого пациента формируется вектор измерений ИФ, каждая компонента 
которого соответствует длине волны и означает интенсивность флуоресценции. 

Цель исследования заключалась в том, чтобы выделить характерные диагностические 
признаки для веррукозной и простой форм лейкоплакии, что позволит уточнить диагноз и 
назначить соответствующую терапию. Идея алгоритма для обработки выборочных данных 
заключается в переходе к средним величинам с последующим анализом графика зависимости 
значений ИФ от длины волны. Для корректности необходимо, чтобы выполнялись гипотезы о 
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равенстве математических ожиданий значений ИФ при каждой длине волны для всех пациен-
тов, что дает основание для выводов относительно поведения «обобщенного» графика. 

Но чтобы проверять гипотезу о равенстве средних необходимо установить, что выбороч-
ные данные являются независимыми и имеют нормальное распределение. Таким образом, 
можно сформулировать следующий алгоритм обработки данных для построения диагности-
ческого дерева, основываясь на [3, 5, 6].

Алгоритм построения диагностического дерева
1. Общий анализ качества данных. На данном этапе целесообразно проанализировать дан-

ные (есть ли пропуски, выбросы и т. п.). 
2. Усреднение данных: а) каждому пациенту при каждой длине волны ставится в соответ-

ствие среднее значение показателя; б) по каждой длине волны вычисляется среднее по всем 
пациентам.  

3. Проверка гипотезы о независимости и нормальности значений ИФ для каждого пациента.
4. Проверка гипотезы о равенстве средних значений ИФ по всем пациентам при каждой 

длине волны.
5. Анализ максимумов и минимумов: 
а) выделить максимумы и минимумы на обобщенных графиках для простой и веррукозной 

форм, они соответствуют определенной длине волны; 
б) отдельно для каждой группы пациентов с веррукозной и простой формами по каждому 

пациенту в исходной таблице определить максимальные и минимальные значения ИФ для 
каждой длины волны.

6. Построение диагностического дерева.
Рассмотрим некоторые особенности реализации данного алгоритма. 
Переход к усредненным значениям предполагает следующие действия: для каждого паци-

ента усредняем измерения при фиксированной длине волны, тем самым, для каждого пациен-
та будет сформирована векторная оценка, каждая компонента которой есть усредненное зна-
чение ИФ, соответствующее определенной длине волны. На основе средних строятся графики 

Рис. 1. Схема формирования обучающего множества
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средних значений в единой системе координат для каждого пациента (по оси абсцисс — сред-
нее значение измерений, по оси ординат — длины волн) и обобщенный график усредненных 
значений по всем пациентам (ось абсцисс — длина волны, ось ординат — среднее значение 
ИФ) для каждой группы.

Проверка гипотезы о независимости и нормальности значений ИФ для каждого пациента 
может быть проведена на основе гистограмм, значений эксцесса или асимметрии или с помо-
щью таких тестов, как график Колмогорова — Смирнова, Шапиро — Уилка или график Q-Q [7].

Проверка гипотезы о равенстве средних значений ИФ по всем пациентам при каждой дли-
не волны осуществляется классическим способом и реализована на основе ANOVA-тест в 
Python с помощью библиотеки SciPy. В качестве группирующей переменной берется номер 
пациента, в качестве зависимой переменной — среднее значение ИФ. Результатом данного те-
ста является F-статистика, которая определить изменчивость между выборками и внутри вы-
борок. Если расчетное значение F  меньше 0,05, то нулевая гипотеза отвергается, а альтерна-
тивная — принимается. Таким образом, ANOVA-тест используется для определения 
статистически значимого различия между группами. Если оно существует, т. е. верна альтер-
нативная гипотеза, то необходимо определить, в каких группах различие наблюдается.

2. Реализация алгоритма построения диагностического дерева

В группу было включено 68N =  пациентов. У каждого пациента с исследуемой зоны при 
каждой длине волны снималось 14 значений ИФ. Таким образом, исходная информация пред-
ставляет собой таблицу, в которой каждому пациенту при каждой длине волны соответствует 
14 значений ИФ. 

В соответствии с изложенным в предыдущем разделе алгоритмом было построено диагно-
стическое дерево с использованием библиотек Phyton. Перечислим основные шаги и особен-
ности их реализации:

1. Импорт необходимых библиотек и модулей. 
2. Подключение Google диска и загрузка данных.
3. Подготовка данных — проверка пропущенных значений, определение типов данных для 

каждого столбца, формирование отчета.
4. Выполнение одностороннего ANOVA-теста:
a) преобразование данных в длинный формат: данные преобразуются из широкого форма-

та в длинный с помощью функции pd.melt(), при этом Patient_ID и Form остаются как иденти-
фикаторы, а новые столбцы получают названия Wavelength и Fluorescence (длины волн пере-
водятся в числовой формат);

b) определение функции для выполнения ANOVA для каждой длины волны и формы: 
функция perform_anova выбирает подмножество данных для указанной формы, затем для ка-
ждой длины волны строит модель обыкновенных наименьших квадратов (OLS) и вычисляет 
таблицу ANOVA;

c) выполнение ANOVA и преобразование результатов в DataFrame;
d) определение функции для форматирования результатов: функция apply_conditional_

formatting обеспечивает визуальное выделение значений красным цветом, где гипотеза отвер-
гается на основе p-value.

e) сохранение результатов: задаются пути для сохранения файлов, далее используется 
pd.ExcelWriter для создания и записи данных в файл Excel. 

Результаты дисперсионного анализа показывают, что гипотеза о равенстве средних зна-
чений по всем пациентам с простой формой отвергается при уровне значимости p = 0,05 для 
следующей длины волны: 379,25.
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Сравнение графиков средних значений для пациентов с различными формами лейкопла-
кии показывает, что каждый график имеет характерные точки минимума и максимума, при-
чем у всех пациентов с простой (рис. 2) и веррукозной (рис. 3) формами точки минимума и 
максимума совпадают, а, следовательно, графики средних значений имеют характерные мак-
симумы и минимумы при одинаковых значениях волн.

Установлено, что для всех длин волн, на которых достигаются минимумы и максимумы, 
выполнены предположения о том, что выборка получена из нормальной генеральной сово-
купности. Затем для простой и веррукозной форм были получены следующие описательные 
статистики для значений флуоресценции в точках максимума и минимума:

– Mean — среднее выборочное значение флуоресценции по всем пациентам;
– [confidence –0,95; confidence –0,95] — это интервал, который с вероятностью 0,95 накры-

вает истинное среднее значение по всей генеральной совокупности;
– Median — характеризует такое значение флуоресценции, что вероятность попасть левее 

данного значения равна вероятности попасть правее и равна p = 0,5; 
– Minimum/maximum — минимальное/максимальное значение флуоресценции; 
– Lower/Upper Quartile — нижняя и верхняя квартили, Lower Quartile — такое значение 

флуоресценции, что 25 % пациентов имеют значение ниже данного, Upper Quartile означает, 
что 25 % пациентов имеют оценку флуоресценции выше данного значения.

– Range — это разброс между минимальным и максимальным значением;
– Std. Dev. — стандартное отклонение характеризует средний разброс вокруг среднего.
Чтобы определить, можно ли по поведению графиков в точках минимума и максимума по-

строить биомаркеры, применялся метод деревья решений, который позволяет строить диагно-

Рис. 2. График средних значений при каждой длине волны по всем пациентам с простой формой

Рис. 3. График средних значений при каждой длине волны по всем пациентам с веррукозной формой
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стические правила. Данные включают 68 строк (40 пациентов с веррукозной формой и 28 па-
циентов с простой формой) и 9 столбцов, содержащих значения флуоресценции в различных 
точках максимума и минимума. Десятый столбец содержит метку формы лейкоплакии (0 — 
простая форма, 1 — веррукозная форма). Данные были разделены на обучающую и тестовую 
выборки в пропорции 80:20 (%). Обучающая выборка использовалась для построения модели, 
а тестовая — для оценки её качества. Для классификации использовался алгоритм Decision 
Tree Classifier из библиотеки Scikit-learn. Модель была обучена на обучающей выборке. 

Визуализация фрагмента дерева решений для значения волны 650.19 представлена на рис. 4. 

Для оценки качества дерева использовалось несколько характеристик (коэффициент Gini, 
кросс-валидация, Confusion Matrix и Classification Report). Затем рассмотренная длина волны 
убирается из рассмотрения и берется следующее значение.

В результате итерационного процесса, когда на каждой итерации рассматривается опреде-
ленная длина волны, были построены диагностические правила: 

1. Если значение интенсивности меньше или равно 9865, 191, то форма веррукозная, в про-
тивном случае, простая.

2. Если значение интенсивности меньше или равно 9651,158, то форма веррукозная, в про-
тивном случае, простая.

3. Если значение интенсивности меньше или равно 1830,707, то форма веррукозная, в про-
тивном случае, простая.

4. Если значение интенсивности меньше или равно 1555,327, то форма веррукозная, в про-
тивном случае, простая.

5. Если значение интенсивности меньше или равно 1677,871, то форма веррукозная, в про-
тивном случае, простая.

6. Если значение интенсивности меньше или равно 5126,96, то форма веррукозная, в про-
тивном случае, простая.

7. Если значение интенсивности меньше или равно 9805,6, то форма веррукозная, в про-
тивном случае, простая.

8. Если значение интенсивности меньше или равно 5052,256, то форма веррукозная, в про-
тивном случае, простая.

9. Если значение интенсивности меньше или равно 1631, 552, то форма веррукозная, в про-
тивном случае, простая.

Разработанный программный модуль прошел тестирование на реальных данных и показал 
высокую точность в распознавании форм лейкоплакии. Полученные результаты демонстри-
руют потенциал использования машинного обучения в медицинской практике и открывают 
возможности для дальнейших исследований и улучшений.

Программный код был написан в среде google.colab, синхронизированной с google.drive. 

Рис. 4. Дерево решений для длины волны 650.19



485

Заключение

Автоматизация процессов принятия диагностических решений повышает качество и эф-
фективность оказания медицинской помощи. Важнейшей составляющей для формализации 
диагностических решений является диагностическое дерево, которое, с одной стороны, может 
быть построено опытным специалистом-врачом, а, с другой, — с привлечением методов ма-
шинного обучения при условии, если имеется подходящая выборка. В представленной статье 
рассматривается задача построения диагностического дерева для лейкоплакии ротовой поло-
сти на основе интенсивности флуоресценции. Основным результатом исследования является 
совокупность правил принятия решений на основе показателей ИФ.
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СОВРЕМЕННЫЕ ПОДХОДЫ К ПРОБЛЕМЕ РАЗОБУЧЕНИЯ НЕЙРОСЕТЕВЫХ МОДЕЛЕЙ

МИРЭА – Российский технологический университет

Н. А. Шелоумов, В. А. Пастухова

Аннотация. В статье представлен обзор методов машинного разобучения, позволяющих 
удалять влияние данных из обученных моделей без переобучения. Рассматриваются точ-
ные и приближённые подходы, описаны ключевые методы (SISA, ARCANE, PGU, GAU, 
Influence Functions) и специализированные архитектуры с акцентом на безопасность и 
приватность. Обсуждаются современные вызовы: квантование моделей, нормативные 
требования и метрики оценки качества. Выводы подчеркивают необходимость разработ-
ки гибридных и сертифицированных алгоритмов, повышения масштабируемости, стан-
дартизации и формальной верификации для обеспечения приватности, надёжности и 
доверия в применениях машинного разобучения.
Ключевые слова: разобучение нейронных моделей (machine unlearning), метрики эффек-
тивности, аттестация моделей, приватность данных, безопасность искусственного интел-
лекта, устойчивость к атакам.

Введение

Масштабное применение нейронных сетей в различных прикладных задачах сопровожда-
ется непреднамеренным накоплением в них чувствительных данных пользователей и компа-
ний. В условиях традиционных подходов удаление частей обучающего набора данных требует 
полного переобучения модели, что в случае с глубокими архитектурами зачастую приводит к 
значительным временным и вычислительным затратам. Формирование концепции машинно-
го разобучения (machine unlearning) обусловлено необходимостью обеспечить возможность 
выборочного «забывания» данных моделью без возврата к начальному этапу обучения.

Выборочное удаление информации из уже обученной модели является критически важ-
ным элементом не только в контексте ускорения процессов поддержки и обновления различ-
ных систем искусственного интеллекта, но и с точки зрения выполнения законодательных 
требований. В частности, Общий регламент по защите данных ЕС (GDPR) устанавливает пра-
во субъекта персональных данных на удаление информации о нём из всех хранилищ и анали-
тических систем, включая модели машинного обучения. Такие же положения присутствуют в 
законодательной базе крупных мировых государств, таких как США и Франция, что подчер-
кивает значимость исследований в области машинного разобучения [1].

Настоящая работа направлена на систематизацию существующих подходов к машинному 
разобучению, анализ их преимуществ и ограничений, а также выявление основных вызовов 
и перспективных направлений исследований. Погружение в тему позволит сформулировать 
практические рекомендации по выбору и применению методов разобучения в различных при-
кладных областях, где вопросы приватности и соответствия правовым нормам играют клю-
чевую роль.

1. Классификация подходов к машинному разобучению

Механизмы машинного разобучения можно разделить на две ключевые категории в за-
висимости от того, какая точность требуется при исключении влияния данных на итоговую 
версию модели [4].
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Точное разобучение (или exact unlearning). Целью точного разобучения является достиже-
ние такого поведения модели, которое будет эквивалентно сценарию, где удалённые данные 
изначально не участвовали в процессе обучения модели.

Приблизительное разобучение (или approximate unlearning). Приблизительное разобуче-
ние направлено на снижение влияния удалённых данных до уровня, на котором их значимость 
статистически неотличима от нуля, при этом не ставя целью полное их удаление. При этом вы-
числительные затраты ниже, чем при точном разобучении, ведь происходят локальные кор-
ректировки, а не дополнительное переобучение частей модели. В основе большинства таких 
методов лежит идея градиентной коррекции, при которой веса модели обновляются в направ-
лении, минимизирующем влияние удалённых данных. Такой процесс выражается следующим 
уравнением:

	 1 ( ( ; )),t t G f tP L Dθθ θ η θ+ ⊥= − ∇ 	 (1)
где tθ  — параметры модели на итерации ,t η — шаг обучения, ( ; )f tL D θ  — функция потерь на дан-
ных, подлежащих удалению, GP⊥  — оператор проекции на подпространство, ортогональное к со-
хранённым градиентам ,G  с целью минимизации воздействия на сохраненные параметры модели.

2. Алгоритмические методы машинного разобучения

Алгоритмические методы машинного разобучения направлены на реализацию как точного, 
так и приблизительного удаления влияния данных с учётом требований к вычислительным ресур-
сам и гарантиям приватности. Рассмотрим ключевые методы и их главные особенности в табл. 1.

Таблица 1
Основные методы машинного разобучения

Класс метода Название метода Краткое описание
Точное 
разобучение

SISA (Sharded, Isolated, 
Sliced, Aggregated)

Разделение обучающего набора на независимые 
сегменты и переобучение лишь затронутых частей 
модели [2]

ARCANE Архитектура с декомпозицией модели 
на подмодели, позволяющая локально обновлять 
параметры без полного переобучения [9]

Приближенное 
разобучение

Projected Gradient 
Unlearning (PGU)

Проекция градиента обновления на ортогональное 
подпространство, минимизация влияния 
удаляемых данных [3]

Gradient Ascent 
Unlearning (GAU)

Целенаправленное увеличение функции потерь 
на удаляемых примерах для подавления их влияния

Influence Functions Аппроксимация влияния каждого примера 
с помощью второй производной для локальной 
коррекции

Newton Unlearning Метод Ньютона с кубической регуляризацией 
для устойчивой и быстрой оптимизации

SURE (Sailency-Based 
Unlearning)

Обновление только наиболее значимых параметров, 
определенных через карты значимости (saliency 
maps)

Каждый из перечисленных методов обладает уникальным сочетанием преимуществ и 
ограничений. Выбор конкретного алгоритма зависит от требований к точности удаления, до-
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ступных вычислительных ресурсов, требуемого уровня формальных гарантий удаления ин-
формации и специфики прикладной задачи.

3. Специализированные архитектуры и применения

3.1. Forgetting Neural Networks (FNN)

Forgetting Neural Networks (FNN) — нейронные сети, включающие специальные слои или 
нейроны с заданными параметрами «скорости забывания». После подачи сигнала о необходи-
мости удаления данных соответствующие параметры встраиваемых слоёв адаптивно умень-
шаются или совсем обнуляются, эмулируя тем самым биологические механизмы забывания 
внутри нейронной сети. Для количественного описания процесса забывания в FNN часто ис-
пользуют функцию затухания весов нейронов по мере обучения:

	 ( 1) ( ) (1 ),t t
i i tω ω λ+ = ⋅ − 	  (2)

где ( )t
iω  — значение веса на итерации , tt λ  — параметр, регулирующий скорость «забывания».

3.2. Разобучение LLM (Large Language Models)

В связи с увеличением масштаба и архитектурной сложности больших языковых моделей, 
возникла необходимость в специально адаптированных алгоритмах разобучения, решающих 
задачи удаления токсичного и недостоверного контента, соответствия требованиям автор-
ских прав и снижения вероятности генерации «галлюцинаций» и ошибочных ответов. Ме-
тоды разобучения LLM включают техники soft prompting (обучение небольших дополнитель-
ных векторов и наборов параметров), gradient ascent (целенаправленное повышение значения 
функции потерь по удаляемым примерам и параметрам для удаления информации) и методы 
fine-tuning (дообучение на более специализированных наборах данных для корректировки па-
раметров) с учётом приватности [11].

3.3. Graph Neural Networks (GNN)

Graph Neural Networks (GNN, графовые нейронные сети). В контексте работы с GNN раз-
работаны специализированные стратегии удаления нужных узлов, рёбер и связанной инфор-
мации без полного переобучения всей структуры графов. Примером такой стратегии может 
служить метод GNNDelete, который обеспечивает формальные гарантии удаления влияния 
заданных элементов, что особенно важно для распределённых и конфиденциальных графов 
данных. Обновление представления узлов в графовой нейронной сети происходит за счёт 
агрегации информации от соседних узлов и применения нелинейной функции активации [5]. 
При удалении узла v  обновление состояния соседнего узла u  на следующем слое ( 1)l +  можно 
формализовать выражением:

	 ( 1) ( ) ( )

( )\{ }
( ),l l l

u
N u v

h W hω
ω

σ+

∈

= ⋅ ∑ 	  (3)

где ( 1)l
uh +  — представление узла u на слое ,l  ( )N u  — множество соседей узла ,u  ( )lW  — пара-

метр слоя, а σ  — сигмоидальная или другая функция активации.

3.4. Spiking Neural Networks (SNN)

Spiking Neural Networks (SNN, спайковые нейронные сети). Опираясь на принципы био-
логии, спайковые нейронные сети реализуют машинное разобучение через механизмы си-
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наптического обрезания (целенаправленное уменьшение/удаление весов синапсов, которые 
связывают нейроны) и адаптивную регуляцию порогов возбуждения нейронов. Это позволяет 
ограничивать влияние определённых сигналов на всю нейронную сеть и обеспечивать управ-
ляемое забывание на уровне связей между нейронами.

4. Критические вызовы и уязвимости

Машинное разобучение, несмотря на значительное развитие, сталкивается с целым рядом 
сложных вызовов и уязвимостей, которые требуют особого внимания на стадии проектирова-
ния и внедрения соответствующих решений. Одной из наиболее существенных проблем оказы-
вается уязвимость разобучения к процедуре квантования моделей: оптимизация разрядности 
весов, используемая для повышения эффективности на ресурсно-ограниченных устройствах, 
способна частично или полностью восстановить влияние данных, ранее подверженных про-
цедуре удаления. Экспериментальные данные свидетельствуют о том, что квантование может 
существенно ослаблять эффект разобучения, что обосновывает необходимость создания за-
щищённых алгоритмов, устойчивых к подобным преобразованиям структуры модели.

Не менее актуальной задачей остаётся верификация корректности реализованного разоб-
учения. Существующие методы проверки, как правило, оказываются недостаточно надёжны-
ми и не способны гарантировать полное устранение следов удалённых данных в параметрах 
модели и её выходах. Проверочные процедуры включают, в частности, использование закоди-
рованных триггеров для бэктур-верификации или сравнение результатов работы модели по-
сле удаления данных с результатами повторного обучения без них. Тем не менее такой подход 
не позволяет добиться абсолютной уверенности в корректности процесса разбучения [10].

Дополнительной угрозой выступают атаки на восстановление удалённой информации. 
Злоумышленники, обладая доступом к модели, могут реализовать Membership Inference Attack 
или Reconstruction Attack, а также инверсию, используя поведение модели либо её параметры 
для поэтапного восстановления исходных данных. Важно, что аналогичные риски наблюда-
ются даже для простых моделей, например линейной регрессии, подчёркивая необходимость 
комплексного анализа уязвимостей и разработки надёжных средств защиты конфиденциаль-
ных данных [6–8]. Существенным ограничением масштабирования методов точного машин-
ного разобучения выступают требования к вычислительным ресурсам. Высокие затраты на 
вычисления затрудняют интеграцию эффективных алгоритмов разбучения в большие про-
мышленные системы, вынуждая исследователей искать компромисс между точностью удале-
ния, скоростью работы и доступными ресурсами вычислительных платформ.

Устранение перечисленных уязвимостей и проблем является необходимым условием для 
широкого и безопасного применения машинного разобучения, особенно в областях с высоки-
ми требованиями к защите данных и соответствию нормативно-правовым актам различных 
государств и сообществ.

5. Инструменты оценки эффективности

Для объективной оценки качества методов машинного разобучения требуется комплекс-
ная система метрик и специализированных эталонных тестовых наборов (бенчмарков), позво-
ляющих всесторонне проанализировать как эффективность удаления данных, так и сохране-
ние полезности и адекватности модели после корректировки обучающих наборов. Основной 
набор показателей, используемых для оценки этих аспектов, приведён в табл. 2.

Комплексное использование перечисленных выше метрик и бенчмарков позволяет полу-
чить объективную оценку качества методов машинного разобучения и выбрать наиболее под-
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ходящие решения для конкретных прикладных задач с учётом требований к безопасности, 
эффективности и вычислительных ресурсов.

6. Рекомендации для внедрения и дальнейших исследований

На основании проведённого анализа современных методов машинного разобучения и ак-
туальных вызовов, можно выделить несколько ключевых направлений как для практического 
внедрения этих технологий, так и для дальнейшего научного развития области.

Одним из важнейших трендов становится комбинирование точных и приближённых ал-
горитмов, что позволяет достичь оптимального баланса между гарантированной защитой 
приватности и необходимым уровнем вычислительной эффективности. Применение гибрид-
ных подходов способствует снижению риска восстановления удалённых данных и укрепляет 
устойчивость моделей к различным типам атак.

Особое значение приобретает формализация стандартов и совершенствование процедур 
верификации успешного разобучения. Принятие воспроизводимых и общедоступных мето-
дик проверки — таких как reproducibility verification или публичные бенчмарки — обеспечива-
ет доверие и прозрачность результатов для пользователей, компаний и регуляторов. Отмеча-
ется тенденция к стандартизации процессов оценки моделей и внедрению открытых тестовых 
наборов.

Таблица 2
Основные инструменты оценки эффективности методов машинного разобучения

Метрика Описание Назначение и применение
Accuracy Доля корректных предсказаний 

на тестовом наборе, исключающем 
удаленные данные

Оценка сохранения общей 
функциональности модели после 
разобучения

Precision 
и Recall

Precision — точность 
положительных предсказаний; 
Recall — полнота исключения данных

Характеризуют способность модели 
корректно «забывать» целевые 
примеры

ROC AUC Площадь под ROC-кривой, 
отражающей соотношение 
чувствительности и специфичности

Анализ изменения 
дискриминационных свойств 
модели

MIA Accuracy Метрика измеряет точность атак по 
определению принадлежности 
примеров в обучающем наборе (MIA)

Оценка степени утечки информации 
об удаленных примерах

Reconstruction 
Attack Resistance

Устойчивость к атакам 
восстановления данных по 
параметрам модели

Проверка защищенности модели 
после процедуры разобучения

Quantization 
Robustness

Изменение свойств модели после 
квантования параметров

Анализ устойчивости разобучения 
к сжатию модели

Time efficiency Время выполнения процедуры 
разобучения

Оценка применимости метода 
в практических условиях

Memory Usage Объём задействованной памяти Анализ ресурсоемкости алгоритма
Scalability Index Характеризует изменение 

вычислительных затрат при 
увеличении размера данных или 
модели

Оценка масштабируемости подхода
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Важным направлением становится повышение устойчивости реализуемых методов к раз-
личным видам оптимизации, включая квантование и компрессию, что особенно актуально 
для внедрения на периферийных устройствах и в массовых корпоративных продуктах. Созда-
ние устойчивых к потере разобучающего эффекта архитектур, способных противостоять из-
менению структуры параметров модели, — необходимое условие безопасности и сохранения 
приватности.

Дополнительным направлением для современных исследователей и инженеров является за-
щита от атак. На этапе проектирования новых алгоритмов рекомендуется заранее интегриро-
вать механизмы мониторинга и аудита устойчивости к потенциальным угрозам, что позволяет 
своевременно обнаруживать и реагировать на попытки восстановления удалённых данных.

Неотъемлемой задачей становится обеспечение интерпретируемости и прозрачности тех-
нологий машинного разобучения. Включение в рабочий процесс методов объяснения и явной 
фиксации удалённых компонентов модели помогает повысить доверие бизнеса и конечных 
пользователей, а также облегчит последующую интеграцию технологий в регулируемые отрасли.

На перспективу открывается путь к развитию расширенных профессиональных инстру-
ментов и фреймворков, поддерживающих гибкую интеграцию различных алгоритмов разобу-
чения под архитектурные и предметные задачи — в том числе для работы с крупными языко-
выми моделями, графовыми и спайковыми нейросетями. Последовательное соблюдение этих 
принципов позволит увеличить качество, безопасность и прозрачность машинного разобуче-
ния, а также ускорит международную интеграцию и дальнейшее развитие исследований в этой 
области.

Заключение

Современные методы и архитектуры машинного разобучения позволяют удалять влияние 
отдельных обучающих данных из нейронных моделей без полного переобучения, что приоб-
ретает особую значимость в современных условиях. Внедрение гибридных и сертифицирован-
ных алгоритмов, развитие формальных процедур верификации, обеспечение устойчивости к 
оптимизации и атакам, а также контроль интегративности — всё это способствует эффектив-
ному и безопасному применению техники разобучения в практических задачах. Перспективы 
дальнейших исследований связаны с усилением приватности, расширением масштабируемо-
сти для самых крупных моделей и созданием открытых инструментов для стандартизации.
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УДК 004.8

ОБУЧЕНИЕ МАЛЫХ ЯЗЫКОВЫХ МОДЕЛЕЙ С ЦЕЛЬЮ АНАЛИЗА 
ПОЛЬЗОВАТЕЛЬСКОЙ ОБРАТНОЙ СВЯЗИ

Воронежский государственный университет

Н. А. Экерт, И. Е. Воронина

Аннотация. Рассматривается актуальная проблема извлечения смыслов из пользователь-
ской обратной связи с целью улучшения существующего программного продукта. В ка-
честве предмета исследования выбраны малые языковые модели (Small Language Models), 
используемые для задач краткого изложения (суммаризации) и извлечения смыслов из 
текста, а также метод их обучения Fine-tuning. Приведены результаты обучения, анализ 
точности, сравнительные таблицы и графическая интерпретация различий до и после об-
учения. Для повышения качества моделей применён метод Supervised Fine-Tuning с ис-
пользованием QLoRA INT4. Новизна результата заключается в получении адаптирован-
ных к решению задач в рамках выбранной предметной области моделей и их сравнении.
Ключевые слова: малые языковые модели, Small Language Models, SLM, оценка отзывов, 
Llama, DeepSeek, Qwen, сравнение языковых моделей, извлечение смыслов.

Введение

Современные программные продукты развиваются в условиях высокой конкуренции, где 
способность своевременно выявлять и устранять недостатки является ключевым фактором 
успеха. Пользовательские отзывы выступают наиболее ценным источником информации о 
реальных сценариях использования ПО, проблемах и пожеланиях [1].

Ручная обработка отзывов становится затруднительной при росте аудитории, что обуслав-
ливает необходимость автоматизации. Языковые модели могут решить задачу формирования 
задач для бэклога разработки на основе отзывов, однако качество результатов существенно 
зависит от адаптации модели под конкретную предметную область [2].

Цель работы — исследовать эффективность применения Fine-tuning малых моделей в ус-
ловиях ограниченных вычислительных ресурсов и сравнить качество их работы до и после 
обучения.

1. Формирование обучающего датасета

Корпус данных представляет собой набор из 3000 реальных пользовательских отзывов на 
программный продукт. Каждый отзыв содержит до 1000 символов, включает субъективные 
оценки, упоминания функциональных возможностей, описания ошибок, пожелания по раз-
витию и общий пользовательский опыт. Данные были предварительно анонимизированы: 
удалены персональные данные, сетевые идентификаторы, имена пользователей и любые све-
дения, относящиеся к конфиденциальной информации [3].

Структура отзывов характеризуется высокой разнородностью: встречаются фрагменты 
разговорной речи, англоязычные термины, эмоциональные формулировки, описания сце-
нариев использования и сравнительные оценки между версиями продукта. Это накладывает 
ограничения на возможности малых языковых моделей, требуя тщательной подготовки обу-
чающего материала.

Для корректной работы алгоритмов обучения все отзывы были приведены к унифициро-
ванному формату: лишние символы удалены, текст нормализован, выполнена токенизация. 
Дополнительная нормализация (лемматизация, исправление опечаток) для этапа fine-tuning 
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не проводилась, поскольку обучение малых моделей предполагает работу с естественным язы-
ком без глубоких преобразований исходного текста [4].

Корпус был разделён на три выборки:
• обучающая — 2700 отзывов (90 %);
• валидационная — 150 отзывов (5 %);
• тестовая — 150 отзывов (5 %).
Такое распределение позволило одновременно обеспечить достаточный объём данных для 

обучения и сохранить объективность итоговой оценки.
В исследовании используется подход SFT — Supervised Fine-Tuning [5-6], при котором мо-

дель обучается на паре «инструкция – корректный ответ». Это один из наиболее распростра-
нённых и эффективных подходов тонкой настройки SLM для решения конкретной задачи. В 
отличие от RAG (Retrieval-Augmented Generation) [7], SFT формирует новое поведение модели 
за счёт обновления её параметров (в нашем случае — через адаптеры LoRA/QLoRA) [8-9].

Для каждой записи создавался единый формат данных, включающий инструкцию, вход-
ные данные и целевой ответ. Формат целевого ответа представлен в листинге 1. Выбранный 
формат обеспечивает совместимость с большинством открытых библиотек fine-tuning, таких 
как HuggingFace, LlamaFactory, unsloth, и полностью соответствует SFT-подходу.

Ручная разметка выполнялась с помощью привлечения эксперта, который действовал по 
следующему алгоритму. Он считывал текст отзыва и определял ключевую проблему или поже-
лание пользователя. Формулировал задачу кратко, не более чем одной строкой, согласно фор-
мату результата user story-like. Это краткий однозначный формат в виде сформулированной 
задачи для разработчиков по улучшению ПО, например, «улучшить скорость запуска прило-
жения на устройствах с низкой производительностью» или «исправить ошибку авторизации 
при переходе между экранами». Далее эксперт исключал дублирование и содержание, не от-
носящееся к функционалу, проверял соответствие результата заранее выбранному формату.

В результате было размечено 100 примеров отзывов, которые использовались:
• как основа для SFT-датасета;
• как образцы для авторазметки оставшейся части корпуса (псевдо-labeling);
• как эталон для оценки качества моделей.
При этом 3000 отзывов не были синтетически расширены. В будущем планируется иссле-

довать влияние расширения обучающего датасета с помощью генерации синтетических отзы-
вов для улучшения качества обучения.

2. Методика обучения Fine-tuning

В исследовании рассматриваются три компактные языковые модели: Llama 3.2 1B, 
DeepSeek-R1 1.5B и Qwen 3 1.7B. Все они относятся к классу малых моделей (до 2 млрд пара-
метров), что делает возможным локальный Fine-tuning на пользовательском оборудовании. 
Малые модели отличаются высокой скоростью работы и низкими требованиями к памяти, 
однако без обучения их качество в решении прикладных задач ограничено, в том числе и в 
задаче анализа пользовательских отзывов. Малые модели хуже работают с задачами смысло-
вого обобщения и извлечения скрытых контекстов — именно поэтому Fine-tuning становится 
обязательным условием.

До обучения все приведенные модели демонстрируют следующие проблемы: недостаточ-
ная точность в определении основной проблемы; подмена запроса overly-general (черезчур 
базовыми) ответами; склонность к галлюцинациям; неустойчивая формулировка задач. Пред-
полагается, что Fine-tuning должен компенсировать эти недостатки за счёт специализации мо-
делей на узкоспециализированной задаче.
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В исследовании рассматриваются 3 целочисленных типа квантования со снижением раз-
рядности: INT8, INT4, NF4. Для сравнения также приводится FP16. INT8 позволяет мини-
мально терять в качестве модели, при этом сильнее нагружает VRAM. INT4 позволяет найти 
компромисс между скоростью и качеством. NF4 (Normalized Float 4) — более гибкая форма 
квантования, обеспечивающая высокую точность, но требующая поддержки инфраструктуры 
QLoRA.

QLoRA — это метод обучения модели, где веса основной модели заморожены и хранятся в 
INT4, а вычисления умножения выполняются в NF4. Обучаемыми при этом становятся только 
низкоранговые матрицы LoRA. Это дает преимущество в виде отсутствия значимых потерь 
качества при SFT, ускоренной загрузки и инференса модели.

В табл. 1 и на рис. 1 приведено распределение и визуализация нагрузки на VRAM при раз-
личных уровнях квантования.

Таблица 1
Нагрузка на VRAM при различных уровнях квантования

Семейство Модель Объем VRAM, Gb
FP16 INT8 INT4 NF4

Llama 3.2 (1b) 2.0 1.0 0.6 0.7
DeepSeek R1 (1.5b) 3.0 1.5 0.9 1.0
Qwen 3 (1.7b) 3.5 1.7 1.1 1.2

Процесс дообучения малых языковых моделей проводился по методике Supervised Fine-
Tuning (SFT) с использованием квантования QLoRA INT4, что позволило существенно сни-
зить требования к видеопамяти без значимой потери качества.

В отличие от Reinforcement Learning из человеческой обратной связи (RLHF), SFT не тре-
бует сложной цепочки обратной связи, обеспечивает предсказуемое поведение модели, подхо-
дит для решения узкоспециализированных задач и позволяет относительно малыми усилия-
ми адаптировать модель к новой предметной области. Данный подход особенно эффективен, 
когда необходимо фильтровать шум и выделять основную мысль из текста.

Fine-tuning выполнялся на пользовательском ПК следующей конфигурации:
• CPU: AMD Ryzen 7 5700X
• RAM: 64 GB
• GPU: Nvidia RTX 4070 ti Super (16 GB VRAM)
• OS: Ubuntu 24.04

Рис. 1. Визуализация нагрузки на VRAM при различных уровнях квантования
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Для всех моделей использовались одинаковые параметры, чтобы обеспечить корректное 
сравнение результатов. Параметры приведены в табл. 2.

Таблица 2
Параметры обучения моделей

№ Параметр Значение
1 Число эпох 3
2 Batch size 128 (эффективный, с градиентным накоплением)
3 Learning rate 2e-4
4 LoRA rank 16
5 LoRA alpha 32
6 LoRA dropout 0,05
7 Warmup steps 100
8 Max seq length 1024 токенов
9 Тип квантования QLoRA INT4

10 Тип обучения SFT

3. Оценка полученных результатов

Итоговое время обучения составило около 3 часов, детализация по времени обучения для 
каждой модели представлена в табл. 3.

Таблица 3
Детализация времени обучения для каждой модели

№ Название модели Время на одну эпоху, мин Общее время обучения, мин
1 Llama 3.2 (1b) 15 45
2 DeepSeek R1 (1.5b) 19 58
3 Qwen 3 (1.7b) 24 73

По окончании обучения было проведено сравнение качества решения задачи оценки от-
зывов пользователей моделями до применения Fine-tuning и после применения Fine-tuning. 
Для тестирования использовались 150 отзывов из тестового набора, 100 вручную размечен-
ных эталонных примера. Метрика — точность совпадения формулировки задачи с экспертной 
разметкой в %. Совпадение учитывает смысл, формулировку и корректность выделенной про-
блемы. Результаты метрики точности при сравнении моделей приведены в табл. 4.

Анализируя полученные результаты, можно сделать вывод о том, что модели существенно 
улучшили свою точность после непродолжительного этапа обучения. При этом, первоначаль-
ные модели справлялись с задачами крайне плохо. Это связано с тем, что у них значительно 
меньшее количество параметров, по сравнению с большими моделями. Прирост в точности 
составил от 33 до 35 %, при том, что датасет искусственно не расширялся и применялись стан-
дартные 3 эпохи обучения.

Таблица 4
Результаты сравнения моделей

№ Название модели Точность модели 
до Fine-tuning, %

Точность модели 
после Fine-tuning, %

Прирост, %

1 Llama 3.2 (1b) 41 74 33
2 DeepSeek R1 (1.5b) 48 82 34
3 Qwen 3 (1.7b) 52 87 35
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После обучения модели перестали галлюцинировать, начали использовать краткую форму-
лировку задач и намного точнее ориентироваться в предметной области. Однако, модели все 
еще испытывают трудности при анализе сложных отзывов с множественными проблемами.

Разный прирост точности моделей можно списать на погрешность, однако очевидным яв-
ляется улучшение показателей точности при большем количестве параметров обучаемой мо-
дели. Так, модель с большим изначальным количеством параметров во всех тестах превзошла 
другие модели и показала больший прирост при обучении (см. рис. 2).

Заключение

Обозначена необходимость использования малых языковых моделей для решения задачи 
изложения (суммаризации) и извлечения смыслов из текста. В качестве инструмента решения 
выбраны малые языковые модели (Small Language Model). Проведено обучение трех представ-
ленных на рынке SLM с применением метода Supervised Fine-Tuning с использованием QLoRA 
INT4. Приведены результаты обучения, анализ точности, сравнительные таблицы и графиче-
ская интерпретация различий до и после обучения.
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УДК 621.865:004.896

О КОМПЬЮТЕРНОЙ МОДЕЛИ СИСТЕМЫ УПРАВЛЕНИЯ ПЕРЕВЕРНУТЫМ 
МАЯТНИКОМ ДЛЯ МИКРОКОНТРОЛЛЕРА STM32F103 НА ОСНОВЕ МЕТОДА PILCO

Воронежский государственный университет

А. Ю. Яковлев, А. Е. Жуков, И. О. Мягкова

Аннотация. Работа посвящена компьютерной реализации алгоритма управления пере-
вернутым маятником, основанном на методе машинного обучения PILCO [4]. Разработа-
но программное обеспечение, реализующее модель и алгоритм управления, выполнены 
компьютерные эксперименты. Результаты демонстрируют высокую эффективность при-
мененного подхода для стабилизации перевернутого маятника в вертикальном положе-
нии. Исследование ориентировано на процесс внедрения подобных систем управления в 
робототехнические комплексы и беспилотные летательные аппараты.
Ключевые слова: регрессионное моделирование, гауссовские процессы [1, 3], переверну-
тый маятник, робототехнический комплекс, алгоритм PILCO [2, 4], байесовский вывод, 
программное обеспечение, управление, угловая скорость, мехатроника, машинное обуче-
ние, компьютерное моделирование.

Введение

Разработка и внедрение систем управления на основе методов машинного обучения для 
мехатронных и робототехнических устройств является актуальной задачей современной ме-
хатроники и робототехники. Одной из таких задач является построение системы управления 
для балансирующего робота (перевернутого маятника). Балансирующий робот — автономное 
устройство, оснащенное микроконтроллером (например, STM32F103) и набором инерциаль-
ных датчиков, гироскоп и акселерометр (например, в модуле MPU6000). Программная часть 
системы управления балансирующим роботом обрабатывает данные, полученные от инер-
циальных датчиков, и вычисляет управляющие сигналы для приводов с целью стабилизации 
его корпуса в вертикальном положении. Для снижения нагрузки на реальное оборудование 
целесообразно создать компьютерную модель системы на базе микроконтроллера, которые 
будет управлять реальным устройством (в данном случае — STM32F103). В качестве метода 
построения системы управления был выбран метод машинного обучения, основанный на ал-
горитме PILСO [2, 4]. Полученная компьютерная модель позволит отрабатывать алгоритмы, 
реализуемые на бортовой части робототехнического комплекса. Компьютерная модель вклю-
чает в себя также программный комплекс для персонального компьютера, предназначенный 
для проведения вычислений, визуализации процессов, приёма и передачи данных. Бортовая 
часть осуществляет вычисление управляющего сигнала по данным компьютерной модели и 
передает необходимый набор параметров на персональный компьютер.

1. Описание математической модели перевернутого маятника.

Рассмотрим систему, состоящую из подвижного основания тележки и шарнирно прикре-
пленного к ней стержня-маятника [2]. Тележка может двигаться вдоль горизонтальной пло-
скости вправо и влево. Трение о поверхность при движении тележки учитывается. Движение 
тележки возникает в результате прилагаемого управляющего усилия u  направленного вдоль 
горизонтальной прямой. Задача для системы управления заключается в непрерывном прило-
жении такого усилия, которое позволит системе удержать стержень в вертикальном положе-
нии, а тележку в начале горизонтальной координатной оси. 
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Перевернутый маятник, изображенный на рис. 1, состоит из тележки массой 1m  и прикре-
пленного к ней маятника массой 2m  и длиной ,l  который свободно качается в плоскости.

Угол маятника θ  измеряется против часовой стрелки от положения «свисает вниз». Тележ-
ка может двигаться горизонтально под действием приложенной внешней силы u  и параметра 
,b  который описывает трение между тележкой и поверхностью.

Положение тележки вдоль направляющей обозначается как 1.x  Координаты 2x  и 2y  обо-
значают положение центра тяжести маятника

	 2 1
1 sin ,
2

x x l θ= + 	  (1)

	 2
1 cos .
2

y l θ= − 	  (2)

Для вывода уравнения движения запишем функцию Лагранжа системы ,L  которая пред-
ставляет собой разность между кинетической энергией T  и потенциальной энергией Π  си-
стемы и в данном случае имеет вид

	 2 2 2
1 2 1 2 2 1

1 1 1( ) ( ) cos ,
2 6 2

L T m m x m l m l x gΠ θ θ θ= − = + + + + 

  	 (3)

где g  — ускорение свободного падения.
Уравнения движения в общем случае могут быть получены из набора уравнений 

	 ,i
i i

d L L Q
dt q q

∂ ∂
− =

∂ ∂

	  (4)

где 1,  2,i =  iQ  — обобщенные силы, а iq  и iq  — переменные состояния системы. В нашем 
случае, система уравнений представлена соотношениями (5)–(6)

	 1 2 1 2 1
1( ) ( cos sin ) ,
2

m m x m l u bxθ θ θ θ+ + − = − 

  	 (5)

	 12 3 cos 3 sin 0.l x gθ θ θ+ + =

 	 (6)
Таким образом состояние системы в каждый момент времени описывается следующими 

параметрами

	 1 1, , , .
T

x x θ θ =  x 

 	 (7)
Математическую модель перевернутого маятника представляют выражения (5)–(7), кото-

рые будут применены для численного моделирования.

Рис. 1. Модель перевернутого маятника: а) тележка, б) стержень
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2. Описание алгоритма управления перевернутым маятником

Для удержания маятника в вертикальном положении применяется алгоритм PILCO [2, 4]. 
Цель работы алгоритма — определить параметры функции ,π  которая минимизирует ожида-
емые долгосрочные затраты на последовательности движений системы в течение конечного 
числа T  временных шагов [2]. Функцию ( )π x  называют политикой, она определят величину 
управляющего сигнала в зависимости от вектора x  текущего положения системы. Вычисле-
ние ожидаемых долгосрочных затрат соответствует вычислению функции значений V

	 [ ]0
0

( ) ( ) ,
t

T

t
t

V x c
=

= Ε∑ x x 	 8)

где функция 0( )V x  вычисляет затраты для состояния системы 0x  с учетом текущей политики 
,π  Ε  — математическое ожидание функции ценности ( ).c x  Функция ценности для данного 

случая, записанная как

	 2
2

1( ) 1 exp ( , )
2

c d
a

 = − − 
 

x x xö 	  (9)

характеризует геометрическое отклонение состояния системы x  от целевого состояния xö [2]. 
Под целевым состоянием системы будем понимать вертикальное положение маятника и поло-
жение тележки в начале отсчета

	 [ ]0,0,0,0 .T=x
Рассмотрим алгоритм PILCO более подробно [2, 4].
На начальном этапе выполняется подача случайных управляющих сигналов на тележку с 

фиксацией данных о меняющемся положении системы. По сформированному набору данных 
в виде кортежей 1 1[ , , , ]Tx x θ θ=x 

  вычисляем коэффициенты функции управления – политики, 
которая в данном случае имеет вид

	 ( ) ,π ν= Ψ +x x 	 (10)
где Ψ  — матрица размером 4× 4 элементов, ν  — вектор размером 4 элемента.

Далее цикличное повторение действий.

Начало цикла 1.
Применяем политику (10) маятнику и фиксируем новый набор данных в виде кортежей 

1 1[ , , , ] .Tx x θ θ=x 



Рассчитываем параметры регрессионной модели динамики системы, основанной на обнов-
ленном наборе данных [2].
Начало цикла 2.

Используя обновленную регрессионную модель динамики системы [2], моделируем ее 
движение с учетом обновленной политики управления на T  шагов по времени вперед. 
В процессе моделирования один шаг соответствует 0,05 с. В процессе моделирования 
вычисляем ожидаемые затраты (8).
Используя полученные ожидаемые значения затрат, улучшаем политику [2, 4].

Конец цикла 2.
Конец цикла 1.

3. Компьютерная модель перевернутого маятника и алгоритм ее работы

Компьютерная модель представляет собой программный комплекс, который включает в 
себя программу для ПК и программу для микроконтроллера STM32F103. 

Программа для ПК имеет интерфейс взаимодействия с пользователем, окно для визуали-
зации процесса движения модели и обеспечивает необходимые расчеты по алгоритму PILCO, 
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передачу и сохранение данных. Программа для ПК написана на языке JAVA в среде Processing 
[5]. В состав программы для ПК входит девять модулей, при этом ее общий размер составляет 
309 Кб.

Программа для МК STM32F103 написана на языке C в среде Keil v5. В ее функционал вхо-
дит прием команд на выполнение расчета от ПК, проведение численного расчета по соотно-
шения динамики перевернутого маятника в режиме реального времени, передачу полученных 
данных о состоянии системы после расчета на ПК по интерфейсу UART.

Рассмотрим основные модули программы для ПК.
Definitions.pde — реализует объявление классов для описания регрессионной модели дина-

мики [1], оптимизации гиперпараметров регрессионной модели, процесса прогнозирования и 
другое;

Matrixs.pde — содержит обширный набор функций по работе с векторами, матрицами и 
многомерным массивами;

Base.pde — реализует процесс выполнения эпизода обучения с фиксацией данных для те-
кущей политики (10). Содержит функцию вычисления величины ценности (9) для данного 
состояния системы.

Сontrol.pde — содержит функции реализующие политику управления (10).
Gp.pde — реализует регрессионную модель динамики системы на основе гауссовских про-

цессов.
Util — содержит функции поиска максимума методом BFGS [2].
Программа для МК STM32F103 содержит следующие файлы.
Main.h/c — файл с основным циклом программы, который обеспечивает расчеты компью-

терной модели с частотой 20 Гц.
System.h/c — реализует набор необходимых системных функций, например функций по 

работе с временными отрезками.
Usart.h/c — содержит набор функций по работе с интерфейсом UART для приема и переда-

чи данных расчетов и различных команд при работе с ПК.
Model.h/c — реализует компьютерную модель перевернутого маятника и численное инте-

грирование методом Рунге — Кутты 2 порядка.
Matrix.h/c — объединяет набор функций для математической обработки векторов и ма-

триц.
PILCO.h/c — содержит набор функций для вычисления прогноза управляющего сигнала 

для текущего положения системы с учетом преданных от ПК параметров политики управле-
ния. 

Рассмотрим более подробно алгоритм работы программного комплекса.

Рис. 2. Основное окно программы для ПК
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На рис. 2 представлено рабочее окно программы для ПК. С правой стороны отображается 
модель перевернутого маятника с демонстрацией его движения в соответствующих режимах 
работы программы. 

После запуска программы для ПК пользователь выбирает режим ИНИЦИАЛИЗИРОВАТЬ. 
Соответствующая команда передается по интерфейсу UART на МК STM32F103, где запускает-
ся процесс подачи случайных управляющих сигналов на компьютерную модель. При этом 
фиксируются состояния системы с частотой 20 Гц. Движение ограничивается заданным вре-
менным интервалом T  или выходом стержня за предельные углы положения, которые исход-
но задаются. Далее происходит автоматическая передача сформированного массива данных 
на ПК.

Теперь пользователь может выбрать режим РАСЧЕТ. В рамках этого режима вычисляется 
параметры политики по текущему массиву данных согласно алгоритму выше.

После появления сообщения о завершения расчета можно произвести передачу параме-
тров на микроконтроллер. Для этого необходимо выбрать режим ПЕРЕДАТЬ.

Далее пользователь выбирает режим СЛЕДУЮЩИЙ — производится выполнение очеред-
ного эпизода обучения с дополнением массива данных под управлением политики с обновлен-
ными параметрами. При этом движение ограничивается заданным временным интервалом T  
или выходом стержня за предельные углы положения.

Для запуска процесса снова необходимо выбрать режим СБРОС. Можно запустить систе-
му управления в режиме ПРОВЕРКА. В этом случае, движение стержня под действием теку-
щей политики ограничиваются только предельными углами положения.

4. Результаты работы компьютерной модели
 
На рис. 3 приведены фазы движения системы после обучения политики. Массив обучающих 

данных составил 121 кортеж вида 1 1[ , , , ] .Tx x θ θ=x 

  Количество обучающих эпизодов — три.

Рис. 3. Демонстрация процесса стабилизации перевернутого маятника 
в вертикальном положении
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Заключение

В работе рассмотрена компьютерная модель для микроконтроллера STM32F103 перевер-
нутого маятника и его системы управления. Система управления построена на основе алго-
ритма машинного обучения PILCO. Программная реализация компьютерной модели вклю-
чает в себя программу для персонального компьютера и программу для микроконтроллера 
STM32F103. Результаты, полученные в работе, можно использовать для создания системы 
управления на основе алгоритма PILCO для широкого класса малоразмерных робототехниче-
ских комплексов и беспилотных летательных аппаратов.
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